期刊文献+

基于社团密合度的复杂网络社团发现算法 被引量:10

Community Detection Algorithm for Complex Networks Based on Group Density
下载PDF
导出
摘要 传统的社团发现算法大多存在划分效果和复杂度相矛盾的问题,为了解决该问题,提出一种新的单社团结构评价标准——社团密合度(group density).在此基础上,设计了一种基于凝聚思想的社团发现算法,该算法通过不断融合小社团,使网络的社团结构向平均社团密合度最大的方向发展,并使用模块度检测算法的划分结果.通过与经典的GN,Fast Newman,LPA等算法对多个数据集进行实验对比,验证了本文算法在获得较好的划分效果的同时具有较低的时间复杂度. Most of the traditional community detection algorithms cannot balance partitioning effect and complexity well.So,this paper presents a new evaluation standard of single community called group density.Based on the group density,a community detection algorithm based on agglomeration is proposed.The algorithm continues to integrate small communities,and makes the community structure of the network develop in the direction of maximizing average group density.Modularity is employed to detect the partitioning effect of the algorithm.Experimental results demonstrate that the new algorithm outperforms the traditional GN,Fast Newman,LPA algorithms in multiple data sets,which shows that the algorithm proposed has better partitioning effect and lower time complexity.
作者 陈东明 王云开 黄新宇 王冬琦 CHEN Dong-ming;WANG Yun-kai;HUANG Xin-yu;WANG Dong-qi(School of Software,Northeastern University,Shenyang 110169,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第2期186-191,共6页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(20170540320) 辽宁省博士启动基金资助项目(20170520358) 辽宁省教育厅科学研究项目(L20150167)
关键词 复杂网络 社团结构 社团发现 模块度 社团密合度 complex network community structure community detection modularity group density
  • 相关文献

参考文献5

二级参考文献55

  • 1赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 2杨博,刘大有.Force-Based Incremental Algorithm for Mining Community Structure in Dynamic Network[J].Journal of Computer Science & Technology,2006,21(3):393-400. 被引量:8
  • 3Newman M E J, Watts D J. lenormalization group analysis of the small-world network model. Phys Lett A, 1999, 263:341-346. 被引量:1
  • 4Newman M E J. Finding community structure in networks using the eigenvectors of matrices. Phys Rev E, 2006, 74: 036104. 被引量:1
  • 5Ino H, Kudo M, Nakamura A. Partitioning of web graphs by community topology. In: Proceedings of the 14th international conference on World Wide Web, New York, 2005. 661-669. 被引量:1
  • 6Wang Z, Zhang J. In search of the biological significance of modular structures in protein networks. PLoS Computation Biol, 2007, 3:e107. 被引量:1
  • 7Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs. Bell syst tech J, 1970, 49:291-307. 被引量:1
  • 8Newman M E J. Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 2006, 103:8577-8582. 被引量:1
  • 9Shiga M, Takigawa I, Mamitsuka H. A spectral clustering approach to optimally combining numericalvectors with a modular network. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, 2007. 647-656. 被引量:1
  • 10Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 2002, 99:7821-7826. 被引量:1

共引文献158

同被引文献74

引证文献10

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部