期刊文献+

Excitation of extremely low-frequency chorus emissions: The role of background plasma density 被引量:2

Excitation of extremely low-frequency chorus emissions: The role of background plasma density
下载PDF
导出
摘要 Low-frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts.However, the mechanism(s) generating these low-frequency chorus emissions have not been well understood..In this letter, we report an interesting case in which background plasma density lowered the lower cutoff frequency of chorus emissions from above 0.1 f_(ce)(typical ordinary chorus) to 0.02 f_(ce)(extremely low-frequency chorus).Those extremely low-frequency chorus waves were observed in a rather dense plasma, where the number density N_e was found to be several times larger than has been associated with observations of ordinary chorus waves.For suprathermal electrons whose free energy is supplied by anisotropic temperatures, linear growth rates(calculated using in-situ plasma parameters measured by the Van Allen Probes) show that whistler mode instability can occur at frequencies below 0.1 f_(ce) when the background plasma density N_e increases.Especially when N_e reaches 90 cm–3 or more, the lowest unstable frequency can extend to 0.02 f_(ce) or even less, which is consistent with satellite observations.Therefore, our results demonstrate that a dense background plasma could play an essential role in the excitation of extremely lowfrequency chorus waves by controlling the wave growth rates. Low-frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts.However, the mechanism(s) generating these low-frequency chorus emissions have not been well understood..In this letter, we report an interesting case in which background plasma density lowered the lower cutoff frequency of chorus emissions from above 0.1 f_(ce)(typical ordinary chorus) to 0.02 f_(ce)(extremely low-frequency chorus).Those extremely low-frequency chorus waves were observed in a rather dense plasma, where the number density N_e was found to be several times larger than has been associated with observations of ordinary chorus waves.For suprathermal electrons whose free energy is supplied by anisotropic temperatures, linear growth rates(calculated using in-situ plasma parameters measured by the Van Allen Probes) show that whistler mode instability can occur at frequencies below 0.1 f_(ce) when the background plasma density N_e increases.Especially when N_e reaches 90 cm–3 or more, the lowest unstable frequency can extend to 0.02 f_(ce) or even less, which is consistent with satellite observations.Therefore, our results demonstrate that a dense background plasma could play an essential role in the excitation of extremely lowfrequency chorus waves by controlling the wave growth rates.
出处 《Earth and Planetary Physics》 CSCD 2019年第1期1-7,共7页 地球与行星物理(英文版)
基金 supported by the National Natural Science Foundation of China (41874194, 41521063, 41374168)
关键词 LOW-FREQUENCY CHORUS EMISSIONS anisotropic temperature instability WHISTLER mode VAN Allen Probes linear growth rate low-frequency chorus emissions anisotropic temperature instability whistler mode Van Allen Probes linear growth rate
  • 相关文献

同被引文献35

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部