期刊文献+

Data driven particle size estimation of hematite grinding process using stochastic configuration network with robust technique 被引量:6

基于鲁棒随机配置网络的赤铁矿磨矿过程数据驱动粒度估计(英文)
下载PDF
导出
摘要 As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation. 粒度作为赤铁矿磨矿过程的关键生产质量指标,针对其难以实时检测的问题,本文在随机配置网络(Stochastic configuration network,SCN)的基础上,证明了一种基于加权最小二乘的鲁棒SCN(Robust SCN,RSCN)的万能逼近特性,并分别采用Huber损失函数的M估计、四分位距(Inter quartile range, IQR)的M估计和非参数核密度估计(Nonparametric kernel density estimation, NKDE)三个函数计算惩罚权值,从而提出三种RSCN算法,在UCI标准数据集上的实验研究表明了所提算法的有效性。基于RSCN算法建立了数据驱动的赤铁矿磨矿过程粒度模型,取得了良好的估计效果。
作者 DAI Wei LI De-peng CHEN Qi-xin CHAI Tian-you 代伟;李德鹏;陈其鑫;柴天佑
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期43-62,共20页 中南大学学报(英文版)
基金 Projects(61603393,61741318)supported in part by the National Natural Science Foundation of China Project(BK20160275)supported by the Natural Science Foundation of Jiangsu Province,China Project(2015M581885)supported by the Postdoctoral Science Foundation of China Project(PAL-N201706)supported by the Open Project Foundation of State Key Laboratory of Synthetical Automation for Process Industries of Northeastern University,China
关键词 hematite grinding process particle size stochastic configuration network robust technique M-estimation nonparametric kernel density estimation 赤铁矿磨矿过程 粒度 随机配置网络(SCN) 鲁棒技术 M估计 非参数核密度估计(NKDE)
  • 相关文献

参考文献2

二级参考文献36

  • 1罗本成,原魁,陈晋龙,朱海兵.一种基于不确定分析的多传感器信息动态融合方法[J].自动化学报,2004,30(3):407-415. 被引量:17
  • 2杨杰,叶晨洲,全勇,陈念贻.支撑向量机回归的简化SMO算法[J].红外与激光工程,2004,33(5):533-537. 被引量:9
  • 3王诚华.德兴铜矿伴生有价元素回收的生产实践[J].金属矿山,2006,35(5):77-79. 被引量:10
  • 4Alex J. Smola,Bernhard Sch?lkopf.A tutorial on support vector regression[J].Statistics and Computing.2004(3) 被引量:1
  • 5Li Haiqing,Wang Zhiyao.Soft Sensing Technology and Its Application[]..2000 被引量:1
  • 6Fung C C,Wong K W,Eren H.Developing a generalized neural-fuzzy hydrocyclone model for particle separation[].Proc on IEEE Instrumentation and Measurement Technology Conference.1998 被引量:1
  • 7Wong K W,Fung C C,Eren H, et al.Fuzzy rule interpola-tion for multidimensional input spaces in determining d50c of hydrocyclones[].IEEE Transactions on Instrumentation and Measurement.2003 被引量:1
  • 8Wong K W,Ong Y S,Eren H, et al.Hybrid fuzzy model-ing using memetic algorithm for hydrocyclone control[].Proceedings of the Third International Conference on Ma-chine Learning and Cybernetics.2004 被引量:1
  • 9Liu Xiaoshi,Zhang Zengke.Research of particle size soft sensor for overfall in hydrocyclones[].Mining & Metallurgy.2005 被引量:1
  • 10Arterburn R A.The sizing and selection of hydrocyclones[].Design and Installa-tion of Comminution Circuits.1982 被引量:1

共引文献2

同被引文献54

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部