摘要
为满足导弹打击目标的落角、时间与过载约束,设计了一种双圆弧轨迹和相应制导律。在初始速度方向角和终端落角的约束下,利用双圆弧的相切关系推导了双圆弧轨迹的解析形式及其可行解集。根据双圆弧轨迹结果由切点决定的特征,推导得出使轨迹满足过载约束、终端约束或能量最优的切点选择方法。之后利用圆弧几何特性和弹目相对运动关系,设计了不依赖弹目距离信息的双圆弧制导律。数值仿真结果表明,双圆弧制导律能够满足复杂约束,且与最优制导律相比,可获得能量最优性相当的结果。
A biarc trajectory and its guidance law are proposed to satisfy the constraints of impact angle, impact time and missile dynamics in missile-target engagement. Under the constraints of the initial and terminal flight path angles, the analytical solution and the feasible solution set of biarc trajectories are deduced by using the tangent relationship between two arcs. Based on the relationship between biarc trajectory and its tangent point, the biarc trajectories which satisfy the dynamics constraint, impact time constraint or energy optimality are generated. Then the biarc guidance law, which does not need range-to-go information, is designed based on the circular geometry and missile-target geometry. Simulation results demonstrate the proposed guidance law can satisfy complex guidance constraints, and it can provide comparable results to the optimal guidance law in terms of energy optimality.
作者
王天宁
唐胜景
郭杰
张尧
WANG Tianning;TANG Shengjing;GUO Jie;ZHANG Yao(School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2019年第2期372-381,共10页
Systems Engineering and Electronics
基金
国家自然科学基金(11202024
11572036)资助课题
关键词
落角约束
时间约束
过载约束
圆弧制导
能量最优
impact angle constraint
impact time constraint
dynamics constraint
circular navigation
energy optimality