期刊文献+

基于改进遗传算法的管道机器人摩擦参数辨识 被引量:1

Friction parameter identification of pipeline robot based on improved genetic algorithm
下载PDF
导出
摘要 对于检测管道槽口宽度的机器人,其摩擦性能直接影响到测量精度和运行效率。通过研究管道机器人在减速过程中的运动特性,利用改进遗传算法对其摩擦参数进行辨识。首先对Stribeck摩擦模型参数进行辨识,误差小于5%,有效避免了局部最优解的问题;然后运用自适应遗传算法跟踪实验所测摩擦力曲线,拟合情况良好。仿真和实验结果表明:改进遗传算法的参数辨识精度高、辨识速度快,所建立的摩擦数学模型可用于计算实时摩擦力,对管道机器人性能的提升具有实际意义。 For robots used for detecting the width of pipeline notch,the friction between robot and pipeline would directly affect the accuracy and efficiency of measurement.The solution is to identify the friction parameters using improved genetic algorithm by studying the deceleration characteristics of the pipeline robot.Simulation and experimental results are as follows:Firstly,parameters of Stribeck friction model are identified,of which the error rate is less than 5%,indicating the problem of local optimization could be successfully solved;then,the adaptive genetic algorithm is applied to fit the experimental data.Through the research,it is concluded that the improved genetic algorithm has a high accuracy and is fast for parameter identification.The established friction mathematical model can be used to calculate real-time friction,which is of great significance for advancing the performance of pipeline robot.
作者 刘鹏 赵言正 闫维新 LIU Peng;ZHAO Yanzheng;YAN Weixin(Institute of Robotics,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《中国民航大学学报》 CAS 2018年第6期54-58,共5页 Journal of Civil Aviation University of China
基金 国家自然科学基金项目(61273342 51475305)
关键词 遗传算法 参数辨识 摩擦模型 管道机器人 genetic algorithm parameter identification friction model pipeline robot
  • 相关文献

参考文献7

二级参考文献27

  • 1李晋,李文星.工件以平面定位时基准的精度分析[J].机床与液压,2005,33(1):43-44. 被引量:3
  • 2刘红,高伟.基于遗传算法的摩擦模型参数辨识[J].科学技术与工程,2007,7(15):3737-3739. 被引量:5
  • 3薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社.2005. 被引量:7
  • 4C Canudas de Wit, Olsson H, Astrom K J. A New Model for Control of Systems with Friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3) :419-425. 被引量:1
  • 5Liu DePeng. Genetic Algorithms Based Parameter Identification for Nonlinear Mechanical Servo Systems[ C]//Proceedings of the Fourth International Conference on Machine Learning and Cybernetics. Guangzhou. IEEE, 2005 : 1116-1120. 被引量:1
  • 6Zhang Wenjing. Parameter Identification of LuGre Friction Model in Servo System Based on Improved Particle Swarm Optimization Algorithm[ C]//Proceedings of the 26th Chinese Control Conference. Zhangiiajie: IEEE, 2007:135-139. 被引量:1
  • 7Srinivas M, Patnaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[j ]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(4):656-667. 被引量:1
  • 8周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2005. 被引量:55
  • 9Mears L, Roth J T, Djurdjanovic D, et al. Quality and Inspection of Machining Operations:CMM Integration to the Machine Tool[J]. Journal of Manufacturing Science and Engineering, 2009, 131 (5) 051006. 被引量:1
  • 10Cho M W,Kim G H,Seo T. Integrated Machining Error Compensation Method Using OMM Data and Modified PNN Algorithm[J]. International Journal of Machine Tools and Manufacture, 2006,46 (12/13) :1417-1427. 被引量:1

共引文献55

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部