期刊文献+

全矢深度学习在轴承故障诊断中的应用 被引量:10

Application of Full Vector Deep Learning in Bearing Fault Diagnosis
下载PDF
导出
摘要 为了应对日趋庞杂的故障监测系统数据,针对单通道信号存在的信息遗漏以及传统智能诊断手工提取特征的复杂性和不通用性,提出了全矢深度学习滚动轴承智能诊断方法。首先,用全矢谱融合双通道的振动信号,得到全矢融合后的主振矢数据,克服了单通道振动信号信息不完整的缺点;然后,在此基础上构建全矢深度神经网络,结合稀疏编码和去噪编码算法,自适应地提取故障特征。最后,使用反向传播算法进行网络参数整体微调。试验结果表明,该方法能够自适应地提取更为有效的故障特征,提高了故障诊断准确率和稳定性,改善了传统方法的复杂流程。 To handle the numerous and jumbled data from fault monitoring systems,considering information missing with the single channel signal and the complexity and non generality of traditional intelligent diagnostic manual extracting features,a method named full vector deep learning in intelligent fault diagnosis of rolling bearing is put forward.Firstly,full vector spectrum is used to fuze the binary channel signal,the main vibration vector data after full vector fusion is acquired,the disadvantage of incomplete single channel vibration signal is overcome.Then,a full-vector deep neural network is built on this basis,combining sparse coding and de-noising coding algorithm,the fault features can be extracted automatically.Finally,the back-propagation algorithm is used to fine-tune the whole network.Experimental results show that the presented method can extract more effective fault features automatically,the classification accuracy and stability of diagnosis are improved,and the complex process of traditional methods is improved.
作者 陈超宇 陈磊 张旺 韩捷 Chen Chaoyu;Chen Lei;Zhang Wang;Han Jie(Vibration Engineering Research Institute,Zhengzhou University,Zhengzhou 450001,China)
出处 《机械传动》 北大核心 2019年第1期144-149,共6页 Journal of Mechanical Transmission
基金 河南省教育厅科学技术研究重点项目指导计划(13B603970.0) 河南省高校重点学科开放实验室项目(PMTE201302A)
关键词 智能故障诊断 深度学习 全矢谱 稀疏自动编码器 Intelligent diagnosis Deep learning Full vector spectrum Sparse auto-encoder
  • 相关文献

参考文献5

二级参考文献132

共引文献303

同被引文献67

引证文献10

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部