摘要
With recent advances in numerical modeling, design of underground structures increasingly relies on numerical modeling-based analysis approaches. While modeling tools like the discrete element method(DEM) and the combined finite-discrete element method(FDEM) are useful for investigating small-scale damage processes, continuum models remain the primary practical tool for most field-scale problems.The results obtained from such models are significantly dependent on the selection of an appropriate yield criterion and dilation angle. Towards improving its capabilities in handling mining-related problems, the authors have previously developed a new yield criterion(called progressive S-shaped criterion). The focus of the current study is to demonstrate its use in modeling rock pillars through a comparative analysis against four other yield criteria. In addition to the progressive S-shaped criterion,only one out of the four other criteria predicted a trend in strength consistent with an empirical pillar strength database compiled from the literature. Given the closely-knit relationship between yield criteria and dilation angle in controlling the overall damage process, a separate comparison was conducted using a mobilized dilation model, a zero degree dilation angle and a constant non-zero dilation angle. This study also investigates the impact of meso-scale heterogeneity in mechanical properties on the overall model response by assigning probability distributions to the input parameters. The comparisons revealed that an isotropic model using a combination of progressive S-shaped criterion and mobilized dilation angle model is sufficient in capturing the behaviors of rock pillars. Subsequently, the pillar model was used to assess the effect of L/W(length/width) ratio on the peak strength.
With recent advances in numerical modeling, design of underground structures increasingly relies on numerical modeling-based analysis approaches. While modeling tools like the discrete element method(DEM) and the combined finite-discrete element method(FDEM) are useful for investigating small-scale damage processes, continuum models remain the primary practical tool for most field-scale problems.The results obtained from such models are significantly dependent on the selection of an appropriate yield criterion and dilation angle. Towards improving its capabilities in handling mining-related problems, the authors have previously developed a new yield criterion(called progressive S-shaped criterion). The focus of the current study is to demonstrate its use in modeling rock pillars through a comparative analysis against four other yield criteria. In addition to the progressive S-shaped criterion,only one out of the four other criteria predicted a trend in strength consistent with an empirical pillar strength database compiled from the literature. Given the closely-knit relationship between yield criteria and dilation angle in controlling the overall damage process, a separate comparison was conducted using a mobilized dilation model, a zero degree dilation angle and a constant non-zero dilation angle. This study also investigates the impact of meso-scale heterogeneity in mechanical properties on the overall model response by assigning probability distributions to the input parameters. The comparisons revealed that an isotropic model using a combination of progressive S-shaped criterion and mobilized dilation angle model is sufficient in capturing the behaviors of rock pillars. Subsequently, the pillar model was used to assess the effect of L/W(length/width) ratio on the peak strength.
基金
funded by The National Institute for Occupational Safety and Health,USA(NIOSH)(Grant No.200-2016-90154)