期刊文献+

直流等离子体法制备Cu纳米粉

Fabrication of Cu Nano-powder by Direct-current Plasma
下载PDF
导出
摘要 本实验利用直流等离子体法制备了Cu纳米粉末,并系统研究了工艺参数对Cu纳米粉末粒子产率、粒径和粒径分布规律的影响。正交实验、扫描电子显微镜、产率及粒径分析结果表明:Cu纳米粉末粒子最佳制备工艺参数为电流(380±5)A、制粉室内N2气体比例为(15±2)%、风机转速为2 400~2 500r/min。在此工艺条件下获得的Cu纳米粉末粒子呈球形,Cu纳米粉末粒子粒径分布均匀,分布范围较窄,粒径约为100nm。随着N2气体比例增加,电流强度增大,Cu纳米粉末产率提高,但同时会导致Cu纳米粉末粒子平均直径增大、粒径分布变宽。然而,随着轴流风机转速的提高,Cu纳米粉末产率提高,并且Cu纳米粉末粒子平均直径减小、粒径分布变窄,这与较快的转速引起Cu棒表面原子蒸气浓度下降有关。 In this paper,Cu nano-powders were prepared by direct-current plasma.The effects of processing parameters on the productivity,particle size and particle size distribution of Cu nano-powders were studied systematically.Orthogonal experiment,scanning electron microscope,productivity and particle size analysis results showed that the optimum parameters are(380±5)A,the proportion of N2 was(15±2)%and the speed of fan was 2 400-2 500 r/min.Under the optimum parameters,Cu nano-powders were spherical and had uniform particle size distribution,narrow distribution range,and the particle size was about 100 nm.With the increasing of N 2 gas ratio and the current intensity,the productivity of Cu nano-powders increased,as well as the average diameter of Cu nano-powders,and the particle size distribution of Cu nano-powders became wider.With the speed of fan increasing,however,Cu nano-powders productivity increased,and Cu nano-powders average diameter decreased,and the particle size distribution of Cu nano-powders became narrower.
作者 阳立庚 吴小刚 郑小秋 YANG Ligeng;WU Xiaogang;ZHENG Xiaoqiu(Nanchang Cemented Carbide Liability Limited Company, Nanchang 330013;School of Mechanical and ElectronicEngineering, Jinggangshan University, Ji'an 343009)
出处 《材料导报》 EI CAS CSCD 北大核心 2018年第A02期114-117,共4页 Materials Reports
基金 吉安市指导性科技计划项目(吉市科字[2015]10)
关键词 直流等离子体 Cu纳米粉 正交实验 direct-current plasma Cu nano-powder orthogonal experiment
  • 相关文献

参考文献3

二级参考文献20

  • 1[1]Gonsalves K E, Strutt P R, Xiao T D, et al. Synthesis of Si(C, N) Nanoparticles by Rapid Laser Polycondensation/Crosslinking Reactions of an Organosilazane Precursor [J]. Mater. Sci., 1992, 27: 3231-3238. 被引量:1
  • 2[2]ZHANG L, Manthiram A. Chemical Synthesis, Microstructure, and Magnetic Properties of Chains Composed of Ultrafine Fe-Co-B Particles [J]. Appl. Phys., 1996, 80(8): 4534-4540. 被引量:1
  • 3[3]Kitakami O, Sato H, Shimada Y. The Crystal Structure of Co Fine Particles Prepared by Vapor Condensation [J]. Materia Japan, 1998, 37(3): 189-194. 被引量:1
  • 4[4]Koc R. Kinetics and Phase Evolution During Carbothermal Synthesis of Titanium Carbide from Ultrafine Titania/Carbon Mixture [J]. Mater. Sci., 1998, 33: 1049-1055. 被引量:1
  • 5[5]Grabis J, Kuzjukevics A, Rasmane D, et al. Preparation of Nanocrystalline YSZ Powders by the Plasma Technique [J]. Mater. Sci., 1998, 33: 723-728. 被引量:1
  • 6[6]Blaskov V, Petkov V, Rusanov V, et al. Magnetic Properties of Nanophase CoFe2Fe4 Partilces [J]. Magn. and Magn. Mater., 1996, 162: 331-337. 被引量:1
  • 7宇田雅広.新しい金属超微粒子の製造法[J].日本金属学会会報,1983,22(5):412-420. 被引量:1
  • 8[8]Ohno S, Uda M. Preparation for Ultrafine Particles of Fe(Ni, Fe(Cu and Fe(Si Alloys by Hydrogen Plasma-metal Reaction [J]. Jpn. Inst. Metals, 1989, 53(9): 946-952. 被引量:1
  • 9[9]Uda M. Prodution of Ultrafine Meal and Alloy Powders by Hydrogen Thermal Plasma [J]. Nanostructured Materials, 1992, 1(1): 101-106. 被引量:1
  • 10[10]Uda M, Ohsaki K, Morida Y, et al. Fabrication of Nb3Al Fine Particles by Hydrogen Plasma Metal [J]. Japanese Powder Metallurgy, 1992, 4: 49-52. 被引量:1

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部