摘要
花津滩芽孢杆菌(Bacillus hwajinpoensis) SLWX2是1株从海水养殖环境分离的可高效去除水体中氨氮(NH_4^+-N)、亚硝酸氮(NO_2~–-N)和硝酸氮(NO_3~–-N)的菌株。本实验在添加葡萄糖条件下,研究NH_4^+-N、NO_2~–-N和NO_3~–-N作为唯一氮源和环境因子(温度、pH、C/N和盐度)对该菌株生长和脱氮性能的影响。结果显示,菌株对这3种形态氮的去除与其生长保持一致,主要发生在对数生长期;当NH_4^+-N作为唯一氮源时,生长和脱氮均没有延迟期,NH_4^+-N在去除过程中,没有NO_2~–-N和NO_3~–-N的积累;当NO_2~–-N作为唯一氮源时,生长和脱氮均有较长延迟期,在NO_2~–-N消除过程中,没有NH_4^+-N和NO_3~–-N的积累;当NO_3~–-N作为唯一氮源时,生长和脱氮也有较长延迟期,在NO_3~–-N消除过程中,基本检测不到NH_4^+-N,NO_2~–-N呈先上升后下降趋势。环境因子影响研究表明,环境因子对该菌株的生长和脱氮性能影响基本一致,在pH为6~8.5、温度为28~40℃、C/N为5~25、Na Cl为0~30g/L条件下,菌株展现了良好的生长特性和脱氮性能。其中,最佳条件中,温度为30℃,C/N为25,p H为8.0,盐度为25。该菌株可高效去除NH_4^+-N、NO_2~–-N和NO_3~–-N,对环境条件适应范围较广,在工业和养殖废水脱氮中具有较大的应用潜力。
Bacillus hwajinpoensis SLWX2 is a bacterium strain isolated from maricultural environments that can effectively remove NH4+-N, NO2–-N, and NO3–-N from water. In this study, the effects of different nitrogen sources(NH4+-N, NO2–-N, and NO3–-N) and environmental factors(temperature, pH, C/N, and salinity) on growth and nitrogen removal were studied. The results showed that the growth of Bacillus hwajinpoensis SLWX2 was consistent with the removal of the three forms of inorganic nitrogen, which occurred mainly in the logarithmic growth phase. There was no delay in growth of the bacterial cells and NH4+-N removal, and no NO2–-N nor NO3–-N was produced when NH4+-N was used as the sole nitrogen source. Further, there was no accumulation of NH4+-N and NO3–-N when NO2–-N was used as the sole nitrogen source, but there was a long delay in growth and NO2–-N removal. NH4+-N was not detected, but NO2–-N first accumulated and then decreased when NO3–-N was used as the sole nitrogen source. The experimental results showed that the effects of the environmental factors on the growth of SLWX2 correlated with its ammonium removal function. The strain showed good growth and ammonium removal performance under the conditions of weak acids, neutral, and weak bases(pH 68.5), temperature 2840 ℃, C/N 525, and NaCl 030 g/L. The optimal conditions for SLWX2 were temperature of 30℃, C/N 25, pH 8.0, and salinity 25. The strain SLWX2 showed high efficiency in removing NH4+-N, NO2–-N, and NO3–-N in water, and it has a wide adaptation range to environmental conditions, which suggests its huge potential in bio-removal of nitrogen in waste water from industries and aquaculture.
作者
王越
成钰
李秋芬
张艳
WANG Yue;CHENG Yu;LI Qiufen;ZHANG Yan(College of Fisheries and Life Science,Shanghai Ocean University,Shanghai 201306;Key Laboratory of Sustainable Development of Marine Fisheries,Ministry of Agriculture and Rural Affairs,Yellow Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Qingdao 266071)
出处
《渔业科学进展》
CSCD
北大核心
2019年第1期133-140,共8页
Progress in Fishery Sciences
基金
中国水产科学研究院基本科研业务费(2017HY-ZD0502
2017HY-ZD1003)
国家自然科学基金项目(31170113)
海洋公益性行业科研专项(201305043)共同资助~~
关键词
花津滩芽孢杆菌
生物脱氮
唯一氮源
环境因素
去除率
Bacillus hwajinpoensis
Bio-removal of nitrogen
Sole nitrogen source
Environmental factors
Removal rate