期刊文献+

基于显著区域分割和小波变换的遥感图像融合 被引量:3

Remote sensing image fusion based on salient region segmentation and wavelet transform
下载PDF
导出
摘要 针对多光谱图像和全色图像的融合,提出一种基于显著区域分割和小波变换的遥感图像融合算法。首先通过IHS变换对多光谱图像进行分解,将亮度分量I和全色图像进行小波变换,得到对应的高低频系数。对低频系数进行模糊C均值聚类分析,并根据显著性因子分割出显著区域和非显著区域,针对不同区域和频段采用不同的准则进行融合。最后重建融合系数并进行IHS逆变换以获得融合图像。通过对比实验,表明该方法获得的融合结果优于传统的融合方法。 Aiming at the fusion of multi-spectral image and panchromatic image,a remote sensing image fusion algorithm based on salient region segmentation and wavelet transform is proposed. Firstly,the multi-spectral image is decomposed by IHS transform, and the intensity component I and the panchromatic image are decomposed by wavelet transform to obtain corresponding high and low frequency coefficients. Then the fuzzy C-means clustering analysis is performed on the low-frequency coefficients,and the salient regions and non-significant regions are segmented according to the significance factor,next different rule are used for the fusion of different regions and frequency bands. Finally,the fusion image is obtained by reconstructing the fusion coefficient and performing the IHS inverse transformation.The comparison experiments show that the fusion results are better than the traditional fusion methods.
作者 王帅 谢明鸿 黄秋萍 杨进 WANG Shuai;XIE Ming-hong;HUANG Qiu-ping;YANG Jin(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《信息技术》 2019年第1期57-60,共4页 Information Technology
基金 云南省科技计划项目(2017FB094)
关键词 图像融合 模糊C均值聚类 小波变换 显著性因子 image fusion fuzzy C-means clustering wavelet transform significant factor
  • 相关文献

参考文献5

二级参考文献36

  • 1杨凯,遥感图像处理原理和方法,1988年,392页 被引量:1
  • 2邵巨良,小波理论影像分析与目标识别,1993年,64页 被引量:1
  • 3Carper W J,Lillesand T M,Kiefer R W.The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data.Photogramm Eng Remote Sensing,1990,56(4):459~467. 被引量:1
  • 4Chavez P S,Sides S C,Anderson J A.Comparison of three difference methods to merge multiresolution and multispectral data:Landsat TM and SPOT panchromatic.Photogramm Eng Remote Sensing,1991,57(3):295~303. 被引量:1
  • 5Aiazzi B,Alparone L,Argenti F,et al.Multispectral Fusion of Multisensor Image Data By the Generalized Laplacian Pyramid.In:Proceedings of Geoscience and Remote Sensing Symposium.New Jersey:IEEE Press,1999.1183~1185. 被引量:1
  • 6Toet A.Image fusion by a ratio of low-pass pyramid.Pattern Recognition Letters,1989,9(4):245~253. 被引量:1
  • 7Buntilov V,Bretschneider T.Objective content-dependent quality measures for image fusion of optical data.In:Proceedings of the IEEE International Geoscience and Remote Sensing Symposium.Anchorage,USA:IEEE Press,2004:613~616. 被引量:1
  • 8Castleman K R.Digital Image Processing.Beijing:Publishing House of Electronics Industry,2002.459~461. 被引量:1
  • 9Garzelli A.Wavelet-based Fusion of Optical and SAR Image Data Over Urban Area.In:Photogrammetric Computer Vision,ISPRS Commission III,Symposium 2002,Graz,Austria.September 9 - 13,2002.p.B-59 ff. 被引量:1
  • 10Y Chen, J Z Wang. A region - based fuzzy feature matching approach to content - based image retrieval [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (9) :1252 - 1267. 被引量:1

共引文献155

同被引文献50

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部