期刊文献+

基于多源融合特征提取的在线广告预测模型 被引量:4

Online Advertising Prediction Model Based on Multiple Source Fusion Feature Extraction
下载PDF
导出
摘要 针对智能移动终端应用平台上的广告点击率(CTR)预测问题,在传统PC端Web平台在线广告CTR预测方法的基础上,提出一个新的智能移动终端在线广告投放业务架构。基于此架构,构建基于机器学习的在线广告预测模型,对用户基本信息、广告内容、用户使用环境等多源特征进行融合提取,实现在线广告CTR的精确预测。结合移动APP应用环境的特点,将用户历史行为数据加入预测模型进一步提高CTR预测性能。实验结果表明,该模型具有较高的CTR预测准确率。 Aiming at the problem of advertising Click Through Rate(CTR)prediction on intelligent mobile devices application platform,this paper proposes a novel online advertising business architecture for intelligent mobile devices based on the traditional CTR prediction method on PC Web platform.With this architecture,an online advertising prediction model based on machine learning is designed to integrate and extract the multiple source features such as user information,advertising content and user usage environment,so as to achieve accurate prediction of online advertising CTR.Combined with the characteristics of the mobile APP application environment,the CTR prediction performance is improved by adding the user’s historical behavior data into the prediction model.Experimental results show that this model has a high accuracy rate of CTR prediction.
作者 刘冶 刘荻 王砚文 傅自豪 印鉴 LIU Ye;LIU Di;WANG Yanwen;FU Zihao;YIN Jian(School of Data and Computer Science,Sun Yat-sen University,Guangzhou 510006,China;Guangdong Provincial Key Laboratory of Big Data Analysis and Processing,Guangzhou 510006,China;Data Center,Flamingo Network Co.,Ltd.,Guangzhou 510630,China;Department of Computing,The Hong Kong Polytechnic University,Hong Kong 999077,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第1期178-185,191,共9页 Computer Engineering
基金 广东省科技计划项目(2012A010701013) 广州市科技计划项目(2013J4500059) 广州市天河区科技计划项目(201601YG152 201701YG127) 广东省大数据分析与处理重点实验室开放基金(2017017 201805)
关键词 计算广告 广告点击率 特征选择 机器学习 预测模型 computational advertising advertising Click Through Rate(CTR) feature selection machine learning prediction model
  • 相关文献

参考文献3

二级参考文献100

  • 1CR—Nielsen.CRNielsen发布2010年上半年中国互联网广告市场简报.http://www.cr—nielsen.com/wangluo/trend/201007/291758.html,2010.7. 被引量:1
  • 2eMarketer. Online Ad Spend Surpasses Newspapers. http://affiliate program, amazon, com/gp/advertising/api/ detail/main, html. 2010.12. 被引量:1
  • 3David Ogilvy. Ogilvy on Advertising. Vintage, 1985. 12. 被引量:1
  • 4Phillip Nelson. Advertising as information. The Journal of Political Economy, 1974, 82(4): 729 754. 被引量:1
  • 5新浪.新浪微博用户超过1亿,开始进军电子商务市场.http://tech.sina.com.cn/i/2011-03-02/17395237059.shtml.2011.3. 被引量:1
  • 6新浪.Twitter董事长称全球用户数已突破2亿.http://teeh.sina.com.cn/i/2011—01—12/17495087422.shtml,20l1.1. 被引量:1
  • 7eMrketer. Twitter ad revenues to soar this year. http:// wwwl. emarketer, com /Article. aspx?R= 1008192& AspxAutoDetectCookieSupport= 1, 2011.1. 被引量:1
  • 8Regelson M, Fain D. Predicting click through rate using keyword clusters//Proceedings of the 2nd Workshop on Sponsored Search Auctions. 2006. 被引量:1
  • 9Broder A, Ciccolo P, Gabrilovich E, Josifovski V, Metzler D, Riedel L, Yuan J. Online expansion of rare queries for sponsored search//Proceedings of the SIGIR. 2009. 被引量:1
  • 10Radlinski F, Broder A, Ciccolo P, Gabrilovich E, Josifovski V, Riedel L. Optimizing relevance and revenue in ad search: A query substitution approach//Proceedings of the SIGIR. 2008. 被引量:1

共引文献58

同被引文献29

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部