摘要
为降低偏二甲肼(UDMH)废水处理能耗、避免因使用添加剂等造成二次污染,制备了一种可见光响应的TiO_2纳米棒阵列(NRAs)/CdS/Au复合薄膜光催化剂。结果表明,TiO_2 NRAs/CdS/Au复合薄膜能够利用可见光降解UDMH,并且以模拟太阳光做光源时复合薄膜对UDMH的降解效果优于单纯可见光做光源时的效果。随UDMH初始浓度增加,其降解率降低,但总降解浓度上升;TiO_2 NRAs/CdS/Au复合薄膜光催化降解UDMH废水适宜的pH约为7.2;加入空穴捕获剂、羟基自由基捕获剂及鼓入氮气都降低UDMH降解率,而鼓入空气则会使UDMH的降解率提高。模拟太阳光和可见光分别照射时,TiO_2 NRAs/CdS/Au复合薄膜都能够对UDMH降解过程中产生的有毒物质亚硝基二甲胺(NDMA)和偏腙(FDMH)实施降解,但模拟太阳光下效果更好,鼓入臭氧有助于NDMA和FDMH的快速去除。
To reduce the energy consumption and avoid the secondary contaminants caused by the use of additives during unsym‐metrical dimethylhydrazine(UDMH)wastewater treatment,a kind of TiO2 nanorod array(NRAs)/CdS/Au thin film photocatalyst with visible light response was prepared.Results show that TiO2 NRAs/CdS/Au composite film can degrade UDMH using visible light,and when using the simulated sun light as light source.the degrading effect of composite film on UDMH was better that of composite film on UDMH when using the pure visible light as light source.The degradation rate of UDMH decreases gradually along with the increase of initial concentration of UDMH,but the total degradation concentration increases.The suitable pH for the photocatalytic degradation of UDMH wastewater by TiO2 NRAs/CdS/Au composite film is about 7.2.Addition of holecapture scavenger,hydroxyl radical scavenger and pumping nitrogen gas all make the degradation rate of UDMH decrease,while pumping air makes the degradation rate of UDMH increase.The TiO2 NRAs/CdS/Au composite film can degrade the toxic substances,nitrosyldimethylamine(NDMA)and formaldehyde dimethylhydrazone(FDMH),which are produced during the degradation of UDMH when the irradiation of simulated sunlight and visible light respectively,but the degradation effect of the simulated sunlight is better and pumping ozone can help the rapid removal of NDMA and FDMH.
作者
高鑫
朱左明
高缨
耿葵
王庆波
韩俊杰
刘祥萱
GAO Xin;ZHU Zuo-ming;GAO Ying;GENG Kui;WANG Qing-bo;HAN Jun-jie;LIU Xiang-xuan(Rocket Force Institute,Beijing 100081,China;Missile Engineering College of Rocket Force Engineering University,Xi′an 710025,China)
出处
《含能材料》
EI
CAS
CSCD
北大核心
2019年第1期28-34,90,共8页
Chinese Journal of Energetic Materials