期刊文献+

温度和压力对煤油燃烧反应诱导时间的影响

Influence of Temperature and Pressure on Combustion Reaction Induction Time of Kerosene
下载PDF
导出
摘要 煤油作为航空航天发动机的理想燃料,其点火特性对动力装置的研制至关重要。本文开发了等容绝热燃烧的化学动力学计算软件,可进行包含准总包反应的燃烧机理计算。采用8组分19步反应计算了氢-空气燃烧,采用10步准总包简化反应机理计算了煤油-空气燃烧,计算结果与实验结果符合较好。计算了不同初温和压力条件下煤油的反应诱导时间,结果表明,初温和压力对煤油反应诱导时间的影响都很大;温度和压力的提升会使反应诱导时间迅速缩短;初始压力为18 MPa时反应诱导时间只有5. 3μs,而101. 325 kPa时的反应诱导时间长达800μs。 Kerosene is an ideal fuel for aerospace engines,and its ignition characteristic is very important to the development of propulsion systems.A chemical kinetics calculation software based on isochoric and adiabatic combustion assumption is developed,which can calculate the combustion mechanism containing quasi-global reaction.The 8 species,19 steps reaction mechanism for hydrogen-air combustion and the 10 steps quasi-global simplified reaction mechanism for kerosene-air combustion are calculated by the software.The calculation results agree well with the experimental results.The combustion reaction induction time of kerosene is calculated under different initial temperature and pressure conditions.The results show that both temperature and pressure have great influence on the reaction induction time of kerosene,and the induction time shortens rapidly when increasing temperature or pressure.The reaction induction time is only 5.3μs when the initial pressure is 18 MPa,while it is up to 800μs when initial pressure decreases to 101.325 kPa.
作者 孙得川 向伟彬 Sun Dechuan;Xiang Weibin(School of Aeronautics and Astronautics,Dalian University of Technology,Dalian 116024,China;State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China)
出处 《航空兵器》 北大核心 2018年第6期60-65,共6页 Aero Weaponry
基金 国防973支持项目(613239)
关键词 煤油 反应机理 诱导时间 压力 温度 kerosene reaction mechanism induction time pressure temperature
  • 相关文献

参考文献6

二级参考文献51

  • 1范学军,俞刚.大庆RP-3航空煤油热物性分析[J].推进技术,2006,27(2):187-192. 被引量:112
  • 2David A Young,Timothy Kokan,Alan Wilhite,et al.A SSTO hypersonic vehicle concept utilizing RBCC and HEDM propulsion technologies[R].AIAA 2006-8099. 被引量:1
  • 3Ryojiro Minato,Takashi Niioka.Effect of hydrogen jet position relative to plasma torch on supersonic combustion[R].AIAA 2003-6908. 被引量:1
  • 4Eunju Jeong,Sean Oltyrne,In-Seuck Jeung,et al.Supersonic combustion of hydrogen fuel injection locations in a cavity-based combustor[R].AIAA 2008-4576. 被引量:1
  • 5李宇飞.RBCC引射/亚燃模态热力调节机理研究[D].西北工业大学,2008. 被引量:3
  • 6Curran E T,Murthy S N B.Scramjet Propulsion[M].Reston,VA:American Institute of Aeronautics and Astronautics,2000. 被引量:1
  • 7Vinagradov V,Kobigsky S,Petrov M.Experimental investigation of kerosene fuel combustion in supersonic flow[J].Journal of Propulsion and Power,1995,11(1):130-134. 被引量:1
  • 8Owens M G,Tehranian S,Segal C,et al.Flame-holding configurations for combustion in mach 1.8 airflow[J].Journal of Propulsion and Power,1998,14(4):456-461. 被引量:1
  • 9Mathur T,Lin K C,Kennedy P,et al.Liquid JP-7 combustion in a scramjet combustor[C] //AIAA Paper.2000,2000-3581. 被引量:1
  • 10Yu G,Li G J,Chang X Y,et al.Investigation of kerosene combustion characteristic with pilot hydrogen in model supersonic combustors[J].Journal of Propulsion and Power,2001,17(6):1263-1272. 被引量:1

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部