期刊文献+

基于JAVA的软件故障自动检测系统设计 被引量:7

Design of software fault automatic detection system based on JAVA
下载PDF
导出
摘要 为了提高软件的故障自动检测能力,进行软件故障自动检测系统优化设计,提出基于JAVA的软件故障自动检测系统。系统由软件故障数据采集模块、故障信息融合模块、特征提取模块、信息集成处理模块和故障专家系统诊断模块组成。在DSP和逻辑PLC中进行故障检测系统的集成开发。采用数据融合滤波技术进行软件故障信息的多传感器采集,对采集的故障采用自适应功率放大进行信息增强处理,提高故障的类别属性诊断能力,在故障信息融合中进行故障特征挖掘,提取反映软件故障类别的关联特征量,在专家系统进行故障识别和智能诊断。在JAVA开发工具下进行软件故障自动检测系统的模块化开发设计。测试结果表明,设计的软件故障检测系统具有很好的故障诊断能力,故障检测的准确率较高。 The software fault automatic detection system based on JAVA is put forward to improve the fault automatic detection ability of software,and perform the optimization design of the software automatic fault detection system.The system is composed of software fault data acquisition module,fault information fusion module,feature extraction module,information integration processing module and fault expert system diagnosis module.The integrated development of fault detection system is carried out in DSP and PLC.The data fusion filtering technology is used to perform the multi-sensor acquisition for the software fault information.The adaptive power amplification is adopted to enhance the acquired fault information,which can improve the diagnostic ability of fault class attribute.The fault feature is mined in fault information fusion,and the correlation characteristic quantity reflecting the software fault category is extracted.The fault identification and intelligent diagnosis are executed in expert system.The modular development and design of the software fault automatic detection system are performed with JAVA development tool.The test results show that the designed software fault detection system has superior fault diagnosis ability,and high fault detection accuracy rate.
作者 林丽红 LIN Lihong(Jilin Province Economic Management Cadre College,Changchun 130012,China)
出处 《现代电子技术》 北大核心 2019年第1期183-186,共4页 Modern Electronics Technique
关键词 JAVA 软件故障 自动检测 特征提取 数据融合滤波技术 故障特征挖掘 JAVA software fault automatic detection feature extraction data fusion filtering technology fault featuremining
  • 相关文献

参考文献7

二级参考文献151

共引文献179

同被引文献54

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部