摘要
针对当前航向航速算法,在复杂环境中,当目标机动运动时,存在较大误差的问题,提出了基于滑窗检测的改进算法。分析了卡尔曼滤波模型对于跟踪机动目标存在的不足,给出了以长窗、短窗比较算法为基础,增加机动检测模块和航迹检测模块,可降低误判目标机动的概率,提高了航向实时的变化性。通过实验数据的比较和分析,改进算法提高了机动目标航向测试的准确性和实时性。
For the current course and speed algorithm has a large error when the maneuvering target moves in complex environment,the improved algorithm which based on the sliding window detection is proposed in this paper.The paper analyzes Kalman filtering model’s deficiency in tracking maneuvering target,uses the long window and short window comparison algorithm as the basis,adds the maneuvering detection module and tracking detection module,reduces the probability of maneuvering target misjudgment,and improves the real-time change of heading.
出处
《工业控制计算机》
2018年第12期65-66,68,共3页
Industrial Control Computer
关键词
滑窗检测
航向算法
卡尔曼滤波
误差修正
sliding windows detection
heading calculation
kalman filter
error correction