期刊文献+

基于混合离散二进制粒子群-遗传算法的测试配置方法研究 被引量:5

Research on Test Configuration Method Based on Hybrid Discrete Binary Particle Swarm Optimization-Genetic Algorithm
下载PDF
导出
摘要 针对目前测试性建模工作中尚无具体方法指导测试配置这一问题,通过对系统内故障传播关系进行分析,提出了一种混合离散二进制粒子群-遗传算法用于求解测试配置的最优方案,使系统的测试性模型在满足规定测试性指标下使用的测试数量最少;将系统测试配置方案进行二进制粒子编码,并在粒子群算法中引入遗传算子,使混合算法具有较快的搜索速度的同时避免陷入局部最优;最后通过实例计算与仿真,证明所提出算法计算结果正确且对于指导复杂系统测试性建模工作具有实际应用价值。 In view of the present testability modeling work,there is no specific methods to guide the test configuration,through the analysis of system failure propagation relation,this paper proposes a hybrid discrete binary particle swarm-genetic algorithm for solving the optimal scheme of test configuration,make the system testability model under the prescriptive testability index using the least number of tests.Binary particle coding is carried out in the system test configuration scheme,and genetic operators are introduced in particle swarm optimization algorithm,so that the hybrid algorithm has fast searching speed and avoids getting trapped in local optimum.In the end,it is proved that the proposed algorithm is correct and has practical application value to guide the test modeling of complex system.
作者 秦玉峰 史贤俊 郭家豪 Qin Yufeng;Shi Xianjun;Guo Jiahao(Shore Defense School, Naval Aviation University,Yantai 264001,China)
出处 《计算机测量与控制》 2018年第12期42-45,149,共5页 Computer Measurement &Control
关键词 测试性模型 测试配置 二进制粒子群算法 遗传算法 testability model test configuration BPSO GA
  • 相关文献

参考文献10

二级参考文献26

共引文献125

同被引文献55

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部