期刊文献+

基于加权支持向量机的Domain Flux僵尸网络域名检测方法研究 被引量:4

Research on Domain Flux Botnet Domain Name Detection Method Based on Weighted Support Vector Machine
下载PDF
导出
摘要 Domain Flux僵尸网络域名多用于僵尸网络的命令控制信道中,因此检测Domain Flux僵尸网络域名对僵尸网络的检测有重要意义。目前Domain Flux僵尸网络域名的检测方法存在较多的问题,如资源消耗多、检测精确率不高等。针对这些问题,文章提出了一种基于加权支持向量机的Domain Flux僵尸网络域名检测方法。通过分析Domain Flux僵尸网络域名和正常域名的区别,提取出数十种域名特征用于区分正常域名和Domain Flux僵尸网络域名;为了使每种特征发挥最大的区分效果,通过信息增益比来计算每种特征的权重值并对特征进行加权;使用支持向量机算法对加权后的特征数据集进行训练,获得检测模型。实验表明,该方法有效地提高了Domain Flux僵尸网络域名的检测准确率,可以较好的识别Domain Flux僵尸网络域名。 Domain Flux botnet domain names are mostly used in botnet command control channels,so detection of Domain Flux botnet domain names is very important for botnet detection.There are many problems in the detection methods of Domain Flux botnet domain names at present.For example,resource consumption is high and detection accuracy is not high.To solve these problems,this paper proposes a Domain Flux botnet domain name detection method based on weighted support vector machine.By analyzing the difference between Domain Flux botnet domain name and traditional domain name,dozens of domain name features are extracted to distinguish normal domain name and Domain Flux botnet domain name.In order to maximize the distinguishing effect of each feature,the weights of each feature are calculated by the information gain ratio and weighted by the feature.The SVM algorithm is trained on the weighted feature data set to obtain the detection model.Experiments show that this method effectively improves the detection accuracy of Domain Flux botnet domain names,and can better identify Domain Flux botnet domain names.
作者 宋金伟 杨进 李涛 SONG Jinwei;YANG Jin;LI Tao(College of Computer Science,Sichuan University,Chengdu Sichuan 610065,China)
出处 《信息网络安全》 CSCD 北大核心 2018年第12期66-71,共6页 Netinfo Security
基金 国家重点研发计划[2016yfb0800604 2016yfb0800605] 国家自然科学基金[61572334 U1736212] 四川省重点研发项目[2018GZ0183]
关键词 DOMAIN Flux僵尸网络 信息增益比 特征加权 支持向量机 Domain Flux botnet information gain ratio feature weighting support vector machine
  • 相关文献

参考文献6

二级参考文献91

  • 1He Xiangning Yang Yuwen (Dept of Electrical Eng., Zhejiang University, Hangzhou 310027)Kuang Sheng(Department of Engineering, University of Cambridge, Cambridge, U.K.)Barry W. Williams Stephen J. Finney(Dept. of Computing & Electrical Eng., Heriot-Watt University, Edinburgh EH14 4AS, U.K.).COMPOSITE SOFT SWITCHING CONFIGURATION FOR INVERTERS USING BRIDGE LEG MODULES[J].Journal of Electronics(China),2001,18(1):61-69. 被引量:7
  • 2文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 3孙彦东,李东.僵尸网络综述[J].计算机应用,2006,26(7):1628-1630. 被引量:29
  • 4Porras P, Saidi H, Yegneswaran V. A foray into Conficker's logic and rendezvous points [R/OL]. Berkeley, CA: USENIX, 2009. [2011-06-10]. http://www, usenix, org/ events/leet09/tech/full papers/porras/porras_html/. 被引量:1
  • 5CNCERT.中国互联网网络安全报告[EB/OL].2011.[201-06-10].http://www.cert.org.cn/UserFiles/File/2010%20first%20half.pdf.2010. 被引量:1
  • 6Symantec Inc. Symantec global Internet security threat report trends for 2009 volume XV [EB/OL]. 2010. E2011 06-101. http://eval, symantee, com/mktginfo/enterprise/white_ papers/b-whitepaper_internet security threat report xv 04 2010. en-us, pdf. 被引量:1
  • 7Holz T, Gorecki C, Rieck C, et al. Detection and mitigation of fast-flux service networks [C] //Proc of the 15th Annual Network and Distributed System Security Symposium. Berkeley, CA: USENIX, 2008. 被引量:1
  • 8Stone-Gross B, Cova M, Cavallaro L, et al. Your botnet is my botnet: Analysis of a botnet takeover[C] //Proc of the 16th ACM Conf on Computer and Communications Security. New York: ACM, 2009:635-647. 被引量:1
  • 9Cui Xiang, Fang Towards advanced Usenix Workshop Threats. Berkeley, Binxing, Yin Lihua, et al. Andbot: mobile bomets [C] //Proc of the 4th on Large-scale Exploits and Emergent CA: USENIX, 2011:No 11. 被引量:1
  • 10Wang P, Sparks S, Zou C C. An advanced hybrid peer-topeer botnet [C] //Proc of the 1st Conf on 1st Workshop on Hot Topics in Understanding Botnets. Berkeley, CA: USENIX, 2007: No 2. 被引量:1

共引文献312

同被引文献21

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部