期刊文献+

基于增强监督学习的微博情感分析研究 被引量:3

Research on Sentiment Analysis of Micro-blog Based on Enhanced Supervised Learning
下载PDF
导出
摘要 [目的/意义]微博作为国内的主要社交媒体,对其评论文本进行情感分析有助于微博的深度挖掘。[方法/过程]针对目前文本情感分析中应用较广的机器语言在处理含有连接词句子时所存在的缺陷,对中文连接词制定了处理规则,将表情符号纳入特征向量,并结合情感词典计算情感决策得分,提出了基于语言规则和情感得分的增强监督学习改进模型。[结果/结论]通过实例验证,结果表明改进后的模型可显著提高文本分类有效性。 [Purpose/Significance]As the main social media in China,micro-blog has much influence on public opinion.It is of significance to sentiment analysis on micro-blog reviews since it is useful for deep mining of micro-blog.[Method/Process]This paper aims at the defects existing in the machine language which is widely used in text sentiment analysis to deal with the sentences containing the conjunction,the processing rules of Chinese connectives are formulated,the emoticons are incorporated into the feature vectors,and the emotional decision scores are calculated with emotion dictionaries.[Result/Conclusion]A system improvement measure is proposed,and its effectiveness is verified by an example.
作者 付月 史伟 Fu Yue;Shi Wei(Business School,Huzhou University,Huzhou 313000)
出处 《情报杂志》 CSSCI 北大核心 2018年第12期130-134,167,共6页 Journal of Intelligence
基金 浙江省教育厅资助项目"新常态下高校网络舆情的监测与预警研究"(编号:Y201533615) 浙江省社会科学联研究课题"新常态下高校突发事件网络舆情的监测与预警研究"(编号:2017B49) 浙江省自然科学基金资助项目"大数据背景下基于情感本体的中文微博挖掘:情感分析的视角"(编号:LY15G030023) 浙江省高校重大人文社会科学攻关计划项目"社交化短文本大数据挖掘研究:情感分析的视角"(编号:2016QN003)
关键词 微博文本 意见挖掘 情感分析 增强监督学习 Micro-blog text opinion mining affective analysis enhanced supervision learning
  • 相关文献

参考文献6

二级参考文献50

  • 1林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 2Chose A,Ipeirotis P G. Designing Novel Review Ranking Sys-tems:Predicting the Usefulness and Impact of Reviews[A].New York,NY:ACM,2007.303-310. 被引量:1
  • 3Popescuam, Etzionio. Extracting Product Features and Opinions From Review[A].Stroudsburg,DA,USA:Association for Computational Linguistics,2005.339-346. 被引量:1
  • 4Zhang H P,Yu H K,Xiong D Y. HHMM-based Chinese lexical analyzer ICTCLAS[A].Sapporo,Japan:Association for Computational Lin-guistics,2003.184-187. 被引量:1
  • 5许晓颖;陶建华.汉语情感系统中情感划分的研究[A]北京,2003199-205. 被引量:1
  • 6Moataz ELAyadi, Mohamed S Kamel,Fakhri Karray.Survey on speech emotion recognition ; features,classifi-cation schemes, and databases [ J ]. Pattern Recognition,2011, 44(3) : 572-587. 被引量:1
  • 7Lanckriet Gert R G,Cristianini Nello,Bartlett Peter, etal. Learning the kernel matrix with semi-definite program-ming [ J ]. Machine Learning Research,2004,5(1):27-72. 被引量:1
  • 8Yeh ChiYuan, Su WenPin, Lee Shiejue. An efficientmultiple-kernel learning for pattern classification [ J ]. Ex-pert Systems with Applications, 2013, 40 (9): 3491 -3499. 被引量:1
  • 9Meyer Patrick E, Bontempi Gianluca. On the use of vari-able complementarity for feature selection in cancer clas-sification [ C ] // Applications of Evolutionary Computing-EvoWorkshops 2006 Proceedings. Budapest: SpringerVerlag, 2006: 91-102. 被引量:1
  • 10Wu Siqing, Falk H Tiago, Chan WaiYip. Automaticspeech recognition using modulation spectral features[ J].Speech Communication, 2011 , 53(5) : 768-785. 被引量:1

共引文献80

同被引文献32

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部