期刊文献+

基于朴素贝叶斯与半朴素贝叶斯图像识别比较 被引量:2

Image recognition comparison based on Naive Bayes and Semi-Naive Bayes
下载PDF
导出
摘要 将朴素贝叶斯分类器用于人体行为图像识别之中,利用高斯模糊、灰度化处理、二值化处理、直方统计函数等图像处理技术对图像数据进行约简、特征提取,然后使用朴素贝叶斯与半朴素贝叶斯对数据进行测试。利用KTH数据库做了两组对比实验,对朴素贝叶斯分类器和半朴素贝叶斯分类器的性能做了比较。实验结果表明,半朴素贝叶斯分类器比朴素贝叶斯分类器分类能力强,但与此同时,半朴素贝叶斯分类器计算所花费的时间比朴素贝叶斯分类器更多。 The Naive Bayes classifier is used in human behavior image recognition,and image processing techniques such as Gaussian blur,grayscale processing,binarization and histogram function are used to reduce and extract image data features.And then Naive Bayes classifier and SemiNaive Bayesian classifier are used to test the data.Based on the KTH database,two groups of comparative experiments were performed,and the performance of the Naive Bayes classifier and the SemiNaive Bayes classifier were statistically analyzed.The experimental results show that the SemiNaive Bayesian classifier has stronger classification ability than the Naive Bayes classifier,but at the same time,the SemiNaive Bayesian classifier takes more time than the Naive Bayes classifier in calculation.
作者 刘闯 Liu Chuang(School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《信息技术与网络安全》 2018年第12期44-47,共4页 Information Technology and Network Security
关键词 朴素贝叶斯分类器 半朴素贝叶斯分类器 高斯模糊 二值化 特征提取 Naive Bayes classifier SemiNaive Bayes classifier Gaussian blur binarization feature extraction
  • 相关文献

参考文献5

二级参考文献86

  • 1张静,王建民,何华灿.基于属性相关性的属性约简新方法[J].计算机工程与应用,2005,41(28):55-57. 被引量:18
  • 2邓维斌,王国胤,王燕.基于Rough Set的加权朴素贝叶斯分类算法[J].计算机科学,2007,34(2):204-206. 被引量:43
  • 3Rish LAn empirical study of the naive Bayes classifier[C]//Proceedings of UCAI Workshop on Empirical Methods in Artificial Intelligence, 2001. 被引量:1
  • 4Hand D J,Yu K.Idiot's Bayes-not so stupid after all?[J].Intemational Statistical Review, 2001 (69) : 388-369. 被引量:1
  • 5Domingos P,Pazzani M.On the optimality of the simple Bayesian classifier under zero-one loss[J].Machine Learning, 1997 ( 29 ) : 103-130. 被引量:1
  • 6Merz C J,Murphy P M.UCI repository of machine learning datasets [EB/OL].http://www.ics.uci.edu/mlearn LRepository.html. 被引量:1
  • 7Andreopoulos A, Tsotsos J K. 50 years of objectrecognition: Directions forward [J]. Computer Vision andImage Understanding, 2013,117(8) : 827-891. 被引量:1
  • 8Russakovsky 0,Deng Jia, Su Hao,et al. ImageNet: Largescale visual recognition challenge [J]. International Journalof Computer Vision,2015,115(3) : 211-252. 被引量:1
  • 9Zhou Bolei,Lapedriza A,Xiao Jianxiong,et al. Learningdeep features for scene recognition using Places database [C]//Proc of the 28th Annual Conf on Neural InformationProcessing Systems. Cambridge, MA: MIT Press, 2014:487-495. 被引量:1
  • 10Xiao Jianxiong,Hays J, Ehinger K,et ai. Sun database:Large-scale scene recognition from abbey to zoo [C] //Proc ofthe IEEE Conf on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE, 2015 : 3485-3492. 被引量:1

共引文献105

同被引文献21

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部