期刊文献+

基于情境分析的移动社交网络群体任务分配 被引量:1

Task assignment of mobile social network crowds based on situation analysis
下载PDF
导出
摘要 移动在线社交网络用户具有移动性、复杂性、实时性等特征,为更加准确实时地为移动在线用户群体分配适合的群体任务,设计一种面向移动在线社交用户群体的任务分配架构,提出一种基于情境分析的用户适合度任务分配算法,通过分析移动社交用户的操作行为和历史信息为其分配更适合的任务,提高整体用户群体的任务完成度和满意度。群体评估实验验证了所提方法在有效性、准确性和实效性等方面有明显优势。 Mobile online social network users have the characteristics of mobility,complexity and real-time.To assign suitable crowd computing tasks for mobile online user crowds more accurately and in real time,a task assignment framework for mobile online social user crowds was designed,and a user fitness task assignment algorithm based on situation analysis was proposed.The mobile social user’s behaviors and historical information were analyzed to assign a more suitable task to improve the task completion and satisfaction of the whole user crowds.Crowd assessment experiments verify that the proposed method has obvious advantages in terms of validity,accuracy and real-time performance.
作者 王小雪 张志勇 史培宁 WANG Xiao-xue;ZHANG Zhi-yong;SHI Pei-ning(College of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China)
出处 《计算机工程与设计》 北大核心 2018年第12期3846-3852,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61772174 61370220) 河南省科技创新杰出人才计划基金项目(174200510011) 河南省高校科技创新团队支持计划基金项目(15IRTSTHN010) 河南省科技攻关基金项目(142102210425) 河南省自然科学基金项目(162300410094) 河南科技大学标志性科技成果培育基金项目(2015BZCG01)
关键词 移动在线社交网络 群体计算 任务分配 情境分析 群体评估 mobile online social network crowd computing task assignment situation analysis crowd assessment
  • 相关文献

参考文献3

二级参考文献29

  • 1刘云浩.群智感知计算[J].中国计算机学会通讯,2012,8(10):38-41. 被引量:20
  • 2Mell P,Grance T.The NIST definition of cloud computing (draft)[S].NIST Special Publication,2011. 被引量:1
  • 3IBM,What is cloud[EB/OL].[2013-07-12].http://www.ibm.com/cloud computing/us/en/what is cloud computing.html. 被引量:1
  • 4Wesley Chun,What is cloud computing[BL].[2013-07-12].https://developers.google.com/appengine/training/intro/whatiscc. 被引量:1
  • 5Cristian Mateos,Elina Pacini,Carlos García Garino.An ACO-inspired algorithm for minimizing weighted flow time in cloudbased parameter sweep experiments[J].Advances in Engineering Software,2013,56:38-50. 被引量:1
  • 6Feller E,Rilling L,Morin C.Energy-aware ant colony based workload placement in clouds[C]//Proceedings of the IEEE/ACM 12th International Conference on Grid Computing.IEEE Computer Society,2011:26-33. 被引量:1
  • 7Babu LD,Krishna PV.Honey bee behavior inspired load balancing of tasks in cloud computing environments[J].Applied Soft Computing,2013,13 (5):2292-2303. 被引量:1
  • 8Calheiros RN,Ranjan R,Beloglazov A,et al.CloudSim:A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J].Software:Practice and Experience,2011,41 (1):23-50. 被引量:1
  • 9Dorigo M,Birattari M.Ant colony optimization[M].Encyclopedia of Machine Learning.Springer US,2010:36-39. 被引量:1
  • 10Wang J, Kraska T, Franklin M], et al. Crowder: Crowd sourcing entity resolution[J]. Proceedings of the VLDB Endowment, 2012, 5(11): 1483-1494. 被引量:1

共引文献24

同被引文献24

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部