摘要
The extremely limited bandwidth in underwater acoustic communication makes channel estimation using fewer pilot symbols more challenging. Iterative channel estimation( ICE) can be used to refine channel estimation with limited number of pilots,by coupling the channel estimator with channel decoder. In this paper,various feedback strategies in ICE are discussed. The performance of a decision feedback based on the cost function is improved by modifying the design and another four feedback strategies are summarized,including hard/soft decision feedback and their threshold-controlled versions. Simulation results show that ICE can achieve impressive gains over the non-iterative receiver and the gains are more significant with fewer pilots. Furthermore,soft decision feedback outperforms hard decision feedback; while the feedback based on the cost function and soft decision feedback have quite close performance.
The extremely limited bandwidth in underwater acoustic communication makes channel estimation using fewer pilot symbols more challenging. Iterative channel estimation( ICE) can be used to refine channel estimation with limited number of pilots,by coupling the channel estimator with channel decoder. In this paper,various feedback strategies in ICE are discussed. The performance of a decision feedback based on the cost function is improved by modifying the design and another four feedback strategies are summarized,including hard/soft decision feedback and their threshold-controlled versions. Simulation results show that ICE can achieve impressive gains over the non-iterative receiver and the gains are more significant with fewer pilots. Furthermore,soft decision feedback outperforms hard decision feedback; while the feedback based on the cost function and soft decision feedback have quite close performance.
基金
Supported by the National Natural Science Foundation of China(No.61601136)