摘要
[目的/意义]对反恐情报中的时空轨迹数据进行伴随模式挖掘,可以发现涉恐群体的同时间段动态空间位置移动规律。[方法 /过程]根据反恐情报数据的特点,修改经典伴随模式挖掘方法中的相似度度量方式和聚类方式,不断迭代完成"聚类和取交集"操作,将满足条件的涉恐活动时空轨迹伴随模式导出。[结果/结论]该方法能够挖掘涉恐群体的同步移动路径,定位重点活动地点,分析涉恐人员之间的亲近度,为打击暴恐活动提供数据参考。
[Purpose/Significance]Mining adjoint pattern of spatiotemporal trajectory could find the movement rules of terrorists and the proximity of different terrorists,which are helpful to provide the essential references for making decision of counter-terrorism.[Method/Process]The initial sample date sets were generated from the tracks of terrorists that had been caught in the cracked terror cases.The adjoint pattern of spatiotemporal trajectory could be obtained by iteratively executing the process of clustering and intersecting sets until meeting the terminal demands.The way of similarity calculation and clustering was modified according to the characteristics of counter terrorism intelligence.[Result/Conclusion]Coupled with static spatial data mining,temporal sequential data mining and frequent spatiotemporal trajectory mining,this method could anticipate the change rules of spatiotemporal data in terrorist activities,which contributed to optimize the disposition of resources of counterterrorism and accomplish precision strike.
作者
李勇男
Li Yongnan(School of Criminal Investigation and Counter Terrorism,People s Public Security University of China,Beijing 100038,China)
出处
《现代情报》
CSSCI
2018年第12期65-69,共5页
Journal of Modern Information
基金
2018年度北京市社会科学基金项目"大数据驱动的首都反恐情报决策机制研究"(项目编号:18GLC062)
教育部人文社会科学研究青年基金项目"基于数据挖掘的涉恐情报量化分析方法研究"(项目编号:17YJCZH098)
中国人民公安大学基本科研业务费项目"反恐情报分析中的空间位置数据挖掘方法研究"(项目编号:2018JKF323)
中国人民公安大学学科建设项目"反恐怖风险评估与防范处置交叉学科与团队建设"(项目编号:2018XK0204)
关键词
反恐情报
数据挖掘
时空轨迹
伴随模式
同步
聚类
counter terrorism intelligence
data mining
spatiotemporal trajectory
adjoint pattern
synchronization
clustering