期刊文献+

基于卡尔曼平滑的AWKNN室内定位方法 被引量:10

AWKNN Indoor Location Methods Based on Kalman Smoothing
下载PDF
导出
摘要 基于接收信号强度指示的WIFI室内定位方案存在采集信息跳变现象,进而影响定位精度的问题,提出一种基于卡尔曼滤波的改进自适应加权K最近邻(AWKNN)定位方法。对比分析多种平滑RSSI算法可行性,验证基于卡尔曼滤波对RSSI值进行平滑处理的优势,结合AWKNN算法并采用均方差计算匹配度,通过实时监控相匹配的无线接入点个数后自动调整均方差分母大小,以此实现定位误差的有效控制。实验结果表明,该基于卡尔曼的AWKNN算法在稳定性和定位精度方面较传统WIFI指纹算法有较大幅度提高。 Aiming at the problem of the information jump in WIFI indoor location based on the received signal strength indication(RSSI),which influences the positioning accuracy,an improved adaptive weighted K nearest neighbor(AWKNN)localization method based on Kalman filter is proposed.In this paper,the feasibility of smoothing the RSSI algorithm is compared and analyzed,and the advantages of smoothing the RSSI based on the Kalman filter are verified.Combining with the AWKNN algorithm and taking advantage of the mean square deviation to calculate the matching degree,the size of denominator m in the mean square error can be adjusted automatically through monitoring the number of matching wireless access points in real time to achieve the effective control of positioning error.The experimental results show that the AWKNN algorithm based on Kalman filter is more effective than the traditional WIFI fingerprint algorithm in terms of stability and positioning accuracy.
作者 孙伟 段顺利 闫慧芳 丁伟 SUN Wei;DUAN Shun-li;YAN Hui-fang;DING Wei(School of Geomatics,Liaoning Technical University Fuxin Liaoning 123000)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2018年第6期829-833,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(41304032) 辽宁省高等学校杰出青年学者成长计划(LJQ2015044) 辽宁省自然科学基金(2015020078) 辽宁省百千万人才工程培养项目(辽百千万立项【2014】76号) 教育部国家级大学生创新训练项目(201710147000353 201710147000051)
关键词 自适应加权K最近邻 指纹算法 室内定位 卡尔曼平滑 接收信号强度指示 AWKNN fingerprint algorithm indoor location Kalman smoothing RSSI
  • 相关文献

参考文献9

二级参考文献50

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2张双成,杨元喜,张勤.一种基于抗差自校正Kalman滤波的GPS导航算法[J].武汉大学学报(信息科学版),2005,30(10):881-884. 被引量:19
  • 3杨元喜.自适应抗差最小二乘估计[J].测绘学报,1996,25(3):206-211. 被引量:58
  • 4张明华,张申生,曹健.无线局域网中基于信号强度的室内定位[J].计算机科学,2007,34(6):68-71. 被引量:66
  • 5万群,郭贤生,陈章鑫.室内定位理论、方法和应用[M].北京:电子工业出版社,2012:1-5. 被引量:15
  • 6Pahlavan K, Li Xinrong. Indoor Geo-location Sci-ence and Technology [ J ]. IEEE CommunicationsMagazine,2002,40(2) : 112-118. 被引量:1
  • 7Jaegeol Yim. Introducing a Decision Tree-based In-door Positioning Technique [J]. Expert Systems-with Applications , 2008,34(2) : 1 296-1 302. 被引量:1
  • 8Ling Pei, Chen Ruizhi, Liu Jingbin. Using Inquiry-based Bluetooth RSSI Probability Distributions forIndoor Positioning[J], Journal of Global Positio-ning Systems , 2010 .9(2) : 122-130. 被引量:1
  • 9Ling Pei, Chen Ruizhi, Liu Jingbin. Inquiry-basedBluetooth Indoor Positioning via RSSI ProbabilityDistributions[C]. 2010 Second International Con-ference on Advances in Satellite and Space Commu-nications, TBD,Athens, Greece,2010. 被引量:1
  • 10Honkavirta V,PeralaT, Ali-Loytty S. A Compara-tive Survey of WLAN Location FingerprintingMethods[C]. Positioning, Navigation and Commu-nication, Hannover, Germany 2009. 被引量:1

共引文献147

同被引文献64

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部