期刊文献+

具备重检测机制的融合特征视觉跟踪算法 被引量:2

Features Integration Based Visual Tracking with Re-Detection Method
下载PDF
导出
摘要 结合图像梯度特征和颜色特征,在相关滤波器跟踪框架基础上,提出一种改进的视觉跟踪算法。对颜色特征进行统计建模,结合由稠密目标后验概率积分得到的目标置信积分和梯度特征相关滤波输出作目标跟踪。同时,还对目标跟踪的结果作质量评估,在跟踪质量非可靠时启动目标重检测过程,采用基于稠密目标后验概率的置信积分来确定备选目标。对跟踪质量不可靠且未重检测到可靠目标的视频帧,不进行跟踪模型的在线更新。实验表明,该算法可以有效避免因遮掩等原因而引起的跟踪不可靠和模型漂移的问题,跟踪性能和几个主流的相关滤波类跟踪器相比有明显改善。 Taking the gradient features and color features of an image into consideration,an improved visual tracking algorithm based on correlation filter tracking is proposed in this paper.The algorithm uses the Bayesian theory to model the color information,and carries out object tracking with the combination of gradient features’correlation filter output and object confidence integral map which is obtained from dense object posterior probability.Meanwhile,the algorithm conducts a quality assessment of the results of the object tracking.Once the tracking quality turns out to be unreliable,the object re-detection process will start,which is based on the object confidence integral to determine the candidate objects.As to the video frame with unreliable tracking quality or no reliable object after re-detection,the tracking model will not be updated online.Experiments show that the proposed algorithm can effectively avoid the problem of unreliable tracking and model drift caused by circumstances varying,and its tracking performance is obviously improved compared with those of several state-of-the-arts correlation filters.
作者 李中科 万长胜 LI Zhongke;WAN Changsheng(School of Computer and Software,Nanjing Institute of Industry Technology,Nanjing Jiangsu 210046,China;School of Information Science and Engineering,Southeast University,Nanjing Jiangsu 210096,China)
出处 《图学学报》 CSCD 北大核心 2018年第5期892-900,共9页 Journal of Graphics
基金 江苏省自然科学基金项目(BK20161099) 南京工业职业技术学院科研基金项目(YK15-04-01)
关键词 相关滤波 视觉跟踪 目标重检测 目标置信积分 correlation filter visual tracking object re-detection object confidence integral
  • 相关文献

参考文献2

二级参考文献17

  • 1POSSEGGER H, MAUTHNER T, and BISCHOF H. In defense of color-based model-free tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2113-2120. 被引量:1
  • 2ORON S, BAR-HILLEL A, LEVI D, et al. Locally orderless tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 1940-1947. 被引量:1
  • 3MEER P, RAMESH V, and COMANICIU D. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575. 被引量:1
  • 4Van de WEIJER J, SCHMID C, and VERBEEK J. Learning color names from real-world Images[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007: 1-8. 被引量:1
  • 5Van de WEIJER J, SCHMID C, VERBEEK J, et al. Learning color names for real-world applications[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1512-1523. 被引量:1
  • 6KHAN F S, Van de WEIJER J, and VANRELL M. Modulating shape features by color attention for object recognition[J]. International Journal of Computer Vision, 2012, 98(1): 49-64. 被引量:1
  • 7KHAN F S, ANWER R M, Van de WEIJER J, et al. Color attributes for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 3306-3313. 被引量:1
  • 8DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090-1097. 被引量:1
  • 9COMANICIU D, RAMESH V, and MEER P. Real-time tracking of non-rigid objects using mean shift[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 2000: 142-149. 被引量:1
  • 10NING J, ZHANG L, ZHANG D, et al. Scale and orientation adaptive mean shift tracking[J]. IET Computer Vision, 2012, 6(1): 52-61. 被引量:1

共引文献44

同被引文献21

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部