期刊文献+

基于SqueezeNet的轻量化卷积神经网络SlimNet 被引量:8

LIGHT-WEIGHT CONVOLUTIONAL NEURAL NETWORK SLIMNET BASED ON SQUEEZENET
下载PDF
导出
摘要 结构参数量和计算量限制了卷积神经网络在移动设备上的应用。主要研究在尽量保持精度的前提下减少结构参数量和计算量。针对分组卷积引起的分组通道间不流通的问题,提出分组瓶颈;针对如何提升分类精度问题,提出奇异瓶颈;使用上述策略改进SqueezeNet,提出轻量化结构SlimNet。实验表明:引入分组瓶颈和奇异瓶颈具有有效性,提出的轻量化结构Slim Net在分类精度、结构参数量及计算量上均优于SqueezeNet。 Structure parameters and computations limit the application of convolutional neural networks(CNNs)in mobile devices.We mainly studied how to reduce the amount of structural parameters and computations while keeping the accuracy as far as possible.The grouped bottleneck was proposed according to the interchannel congestion caused by grouped convolution,singular bottleneck was proposed to improve classification accuracy,and the light-weight structure,SlimNet,was proposed after improving SqueezeNet using the above strategies.The experiment results demonstrate the effectiveness of grouped bottleneck and singular bottleneck SlimNet is superior to SqueezeNet in terms of classification accuracy,structural parameters and computation.
作者 董艺威 于津 Dong Yiwei;Yu Jin(Department of Computer Science and Technology,College of Engineering,Shantou University,Shantou 515063,Guangdong,China)
出处 《计算机应用与软件》 北大核心 2018年第11期226-232,共7页 Computer Applications and Software
关键词 图像分类 卷积神经网络 轻量化 分组卷积 分组瓶颈 奇异瓶颈 SlimNet Image classification Convolutional neural network Light-weight Group convolution Grouped bottleneck Singular bottleneck SlimNet
  • 相关文献

同被引文献53

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部