期刊文献+

结构森林边缘检测与渗流模型相结合的混凝土表面裂缝检测 被引量:9

Concrete Surface Cracks Detection Combining Structured Forest Edge Detection and Percolation Model
下载PDF
导出
摘要 针对现有混凝土表面裂缝检测方法对不同环境下采集的裂缝图像集检测效果鲁棒性不强的问题,引入基于结构森林的学习框架来提取裂缝边缘,并融合改进的快速渗流算法检测裂缝,以保证检测精确率和效率。使用分段函数对彩色图像进行线性变换以增强裂缝,根据包含裂缝块的局部结构特征及彩色图像积分通道特征,利用结构森林边缘检测器快速提取裂缝边缘,同时结合改进的渗流模型快速渗流边缘并去噪。最后,利用形态学方法,连接较小断裂并填充孔洞。在收集的各类裂缝图像集上的实验结果表明,该算法处理速度快、鲁棒性好,且裂缝提取的精确度优于现有算法。 To improve the robustness of crack detection methods for different concrete surface crack images,this paper utilized structured forest based learning framework to extract crack edge,and merged improved fast percolation algorithm to detect crack,ensuring the precision and efficiency of detection.This approach enhances the crack images by using a linear transform piecewise function to conduct linear transformation for color images.Then,according to the local structured information of crack block and the integral channel features obtained from the crack edge images,the structured forest edge detector is used to extract the crack edge fast,and the improved percolation model is fused to percolate edge fast and denoise.Finally,the morphological method is used to connect small fractures and fill the holes.Experimental results on various crack image datasets show that the proposed approach is fast and robust,and it’s superior to state-of-the-art algorithms in terms of the accuracy of crack detection.
作者 瞿中 鞠芳蓉 陈思琪 QU Zhong;JU Fang-rong;CHEN Si-qi(School of Software Engineering,Chongqing University of Posts&Telecommunications,Chongqing 400065,China)
出处 《计算机科学》 CSCD 北大核心 2018年第11期288-291,311,共5页 Computer Science
基金 重庆市基础科学与前沿技术研究项目(cstc2015jcyjBX0090 cstc2014jcyjA40033 cstc2015jcyjA40034 cstc2014jcyjA10051)资助
关键词 结构森林 边缘检测 渗流模型 去噪 Structured forest Edge detection Percolation model De-noising
  • 相关文献

参考文献2

二级参考文献31

  • 1Subirats P,,Dumoulin J,Legeay V,et al.Automa-tion of Pavement Surface Crack Detection Using theContinuous Wavelet Transform. 2006 Interna-tional Conference on Image Processing . 2006 被引量:1
  • 2Xu G A,Ma J L,Liu F F,et al.Automatic Recog-nition of Pavement Surface Crack Based on BP Neu-ral Networks. 2008 International Conference onComputer and Electrical Engineering . 2008 被引量:1
  • 3Liu F F,Xu G A,Yang Y X,et al.Novel Ap-proach to Pavement Cracking Automatic DetectionBased on Segment Extending. 2008 Internation-al Symposium on Knowledge Acquisition and Mod-eling . 2008 被引量:1
  • 4Weiss M A.Data Structure and Algorithm Analysisin C++(3/E). . 2007 被引量:1
  • 5Jian Zhou,Peisen S Huang,Fu-Pen Chiang.Wavelet-based pavement distress detection and evaluation. Optical Engineering . 2006 被引量:1
  • 6Yan M D,Bo S B,Xu K,et al.Pavement crack de-tection and analysis for high-grade highway. ICEMI 2007.8th International Conference on Elec-tronic Measurement and Instruments . 2007 被引量:1
  • 7Li Qingquan,Liu Xianglong.Novel approach to pave-ment image segmentation based on neighboring differencehistogram method. CISP2008 . 2008 被引量:1
  • 8Wiedemann C,Ebner H.Automatic completion and evaluation ofroad networks. International Archives of Photogrammetry andRemote Sensing . 2000 被引量:1
  • 9Chambon S, Moliard J M. Automatic road pavement assessmentwith image processing: review and comparison [J]. InternationalJournal of Geophysics, 2011, 2011: Article ID 989354. 被引量:1
  • 10Chou J, O’Neill W A, Cheng H. Pavement distress evaluationusing fuzzy logic and moments invariants [J]. TransportationResearch Record, 1995, 1505: 39-46. 被引量:1

共引文献34

同被引文献59

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部