期刊文献+

基于SGPLVM-LSSVM算法的U形折弯件模型参数优化研究 被引量:2

Research on Parameter Optimization of U-shaped Bending Parts Model Based on SGPLVM-LSSVM Algorithm
下载PDF
导出
摘要 影响高强度U形折弯件回弹的因素众多,比如工件尺寸、力学性能和负载条件等,使得高强度折弯件的弯曲回弹难以控制。把回弹角α和最小弯曲回弹半径R作为双目标函数,首先利用监督学习-高斯过程隐变量模型(SGPLVM)进行变量筛选和降维,构建U形折弯件的最小二乘支持向量机模型(LSSVM);再把SGPLVM-LSSVM实验结果分别与SVM、FEM、实际零件进行比较,验证了此算法模型的可行性。 There are many factors influencing springback of high strength U-shaped bending parts,such as workpiece size,mechanical properties and load conditions,which make bending springback of high-strength bending parts be difficult to control.The minimum bending radius R and the springback angleαwere taken as two objective functions.Firstly,supervised gaussian process latent variable model(SGPLVM)was used for variable selection and dimensionality reduction,the least squares support vector machine(LSSVM)model for U-shaped bending part was constructed.The prediction results of SGPLVM-LSSVM were compared with SVM,FEM prediction results and actual engineering parts to verify the feasibility of the proposed model.
作者 徐承亮 曹志勇 王大军 胡吉全 XU Chengliang;CAO Zhiyong;WANG Dajun;HU Jiquan(Information Engineering School,Guangzhou Vocational College of Technology and Business,Guangzhou Guangdong 511442,China;School of Material Science and Engineering,Hubei University,Wuhan Hubei 430074,China;College of Automation, Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Logistics Engineering College, Wuhan University of Technology,Wuhan Hubei 430072,China)
出处 《机床与液压》 北大核心 2018年第20期29-32,58,共5页 Machine Tool & Hydraulics
基金 国家自然基金面上项目(51675201) 材料成形国家重点实验室开放基金资助项目(P2018-006)
关键词 U形折弯件 支持向量机模型 监督学习-高斯过程隐变量模型 U-shaped bending parts Least square support vector machine Supervised gaussian process latent variable model
  • 相关文献

参考文献6

二级参考文献82

共引文献238

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部