期刊文献+

一种适应凹障碍检测的激光雷达布局研究 被引量:1

Study on lidar layout suitable for concave obstacle detection
下载PDF
导出
摘要 无人驾驶车的障碍识别是移动机器人自主导航的关键技术之一,一直是国内外各大学、机构的研究重点。现阶段,国内外对凸障碍的识别已经做了很多工作,但针对非结构化环境下的凹障碍的检测却少有研究。针对非结构化环境的凹型障碍物检测问题,基于16线三维激光雷达,提出新的激光雷达布局方法以缩小无人车前盲区,及时检测到凹障碍,并分析凹型障碍物的特征。通过实验,验证了新激光雷达的布局可以有效地检测到野外的凹型障碍物。 The obstacle identification technology of unmanned vehicle is one of the key technologies for mobile robot autonomous navigation,and always the research focus of universities and institutions all over the world.At this stage,a lot of work has been done on the recognition of concave obstacle at home and abroad,but the research on concave obstacle detection in unstructured environment is few.Aiming at the concave obstacle detection in unstructured environment,a new lidar layout method is put forward on the basis of 16-line 3D laser radar to reduce the blind area in front of unmanned vehicle,and detect the concave obstacle in real time.The characteristics of negative obstacle are analyzed.The experimental results show that the new lidar layout can detect the concave obstacles in the field effectively.
作者 张英 李擎 张昊 ZHANG Ying;LI Qing;ZHANG Hao(Beijing Key Laboratory of High Dynamic Navigation Technology,Beijing Information Science&Technology University,Beijing 100101,China)
出处 《现代电子技术》 北大核心 2018年第21期142-145,共4页 Modern Electronics Technique
基金 国家自然科学基金(61471046) 北京市自然科学基金(4172022) 北京市科技计划课题(Z161100003016011)~~
关键词 无人驾驶车 非结构化环境 凹型障碍物 激光雷达布局 车前盲区 障碍物特征 unmanned vehicle unstructured environment concave obstacle lidar layout blind area in front of car obstacle characteristic
  • 相关文献

参考文献4

二级参考文献12

  • 1刘经南,张小红.利用激光强度信息分类激光扫描测高数据[J].武汉大学学报(信息科学版),2005,30(3):189-193. 被引量:65
  • 2Langer D, Rosenblatt J K, Hebert M. A behavior-based system for off-road navigation [J]. IEEE Trans on Robotics and Automation,1994, 10(6) : 776- 783. 被引量:1
  • 3Betozzi M, Broggi A. GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection [J]. IEEE Trans on Image Processing, 1998, 7(1): 62- 81. 被引量:1
  • 4Xiang Z, Liu J, Xu Z. Small obstacle detection for autonomous land vehicle under semi-structural environments [A]. In: Proc IEEE Intelligent Transportation System (ITSC) [C]. Shanghai, 2003. 293 - 298. 被引量:1
  • 5Matthies L, Bellutta P, McHenry M. Detecting water hazards for autonomous off-road navigation [A]. In: SPIE Conference on Unmanned Ground Vehicle Technology V [ C]. 2003. 231 - 242. 被引量:1
  • 6Manduchi R, Castano A, Matthies L. Obstacle detection and terrain classification for autonomous off-road navigation [J]. Irrt J Autonomous Robots, 2005, 18(1): 81- 102. 被引量:1
  • 7Matthies L, Rankin A. Negative obstacle detection by thermal signature [A]. In: Proc IEEE Intelligent Robotics and Systems [C].2003. 906- 913. 被引量:1
  • 8Hong T, Chang T, Rasmussen C, et al. Feature detection and tracking for mobile robots using a combination of LADAR and color images [A]. In: Proc IEEE Robotics and Automation [C]. 2002. 4340- 4345. 被引量:1
  • 9Chen Q, Ozguner U, Redmill K A. Ohio State University at the 2004 DARPA grand challenge: developing a completely autonomous vehicle [J]. IEEE Intelligent Systems, 2004, 19(5): 8- 11. 被引量:1
  • 10白冰洁,韩峻峰,潘盛辉,林川,袁会东.基于双阈值分割的车道线检测方法[J].信息技术,2013,37(3):43-45. 被引量:11

共引文献23

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部