期刊文献+

大数据背景下农业企业电子商务商品图像特征提取检索的方案设计 被引量:7

Scheme Design of Image Feature Extraction and Retrieval of E-Commerce Products in Agricultural Enterprises under the Background of Big Data
下载PDF
导出
摘要 农业企业电子商务平台的蓬勃发展离不开大数据技术的强力支持,设计一套基于大数据背景下的农业企业电子商务商品图像特征提取检索系统对用户和农业企业而言意义重大。系统设计应满足海量商品存储需求、用户快速在线检索需求、快速响应及处理需求,系统应以Hadoop作为框架进行系统架构,设计满足用户输入查询和提供显示结果的接口模块、输入图像和库中图像的特征提取模块、输入图像和库中图像特征匹配模块。同时,系统应采用先进的图像特征提取检索算法,以提高图像检索的准确率和效率,为用户提供更佳的体验。 The vigorous development of e-commerce platform for agribusiness is inseparable from the strong support of big data Technology.Designing a set of e-commerce commodity image feature retrieval system based on big data background is of great significance to users and agricultural enterprises.The system design should meet the needs of mass commodity storage,fast online retrieval of users,rapid response and processing requirements.The system should use Hadoop as the framework for system architecture,design interface modules that meet user input query and provide display results,input images and images in the library.The feature extraction module,the input image,and the image feature matching module in the library.At the same time,the system should adopt advanced image feature extraction retrieval algorithm to improve the accuracy and efficiency of image retrieval and provide users with a better experience.
作者 杨露 YANG Lu(Guizhou University of Commerce,Guiyang 550014,China)
机构地区 贵州商学院
出处 《电视技术》 2018年第11期82-86,共5页 Video Engineering
基金 贵州省教育厅青年科技人才成长项目"大数据背景下农业企业电子商务模式研究"(黔教合KY字[2017]232)
关键词 农业企业 电子商务 商品图像 HADOOP 特征提取 agricultural enterprise e-commerce commodity image Hadoop feature extraction
  • 相关文献

参考文献8

二级参考文献53

  • 1李宗民,李华.基于结构矩不变量的形状相似性比较[J].计算机工程,2006,32(8):189-191. 被引量:11
  • 2Madugunki M, Bormane DS, Bhadofia S, Dethe (2 Comp- arison of different CBIR techniques. Electronics Computer Technology (ICECT), 2011,4:372-375. 被引量:1
  • 3Flickner M, Hafner H. Query by Image and Video Content: The QBIC System.IEEE Computer. Sept, 1995,28(9):23-32. 被引量:1
  • 4Li XL. Image Retrieval Based on Perceptive Weighted Color Blocks. Pattern Recognition Letters, 2003,24(12):1935 -1941. 被引量:1
  • 5Gonzalez RC, Woods RE. Digital image processing: Prentice Hall,2002. 被引量:1
  • 6Lim J H,Jin J S. Image indexing and retrieval using visual keyword histograms [ J]. Proc. IEEE conference on ICME 2002. 被引量:1
  • 7Zhang C,Chen T. An active learning framework for content-based information retrieval[ J ]. IEEE Trans On Multimedia, 2002,4(2) :260 - 268. 被引量:1
  • 8Lim S, Lu G J. Spatial statistics for content-based image retrieval. Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC) 2003. 被引量:1
  • 9Sun J D,Zhang X M, Cui J T, et al. Image Retrieval Based on Color Distribution Entropy [J]. Pattern Recognition Letters, 2005. 被引量:1
  • 10朱林婷,丁荣涛.基于内容的图像检索在电子商务中应用初探[J].商场现代化,2007(11X):138-139. 被引量:3

共引文献41

同被引文献94

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部