期刊文献+

基于卷积神经网络的加密芯片差分攻击新方法

New method of differential attack for encryption chip based on convolutional neural network
下载PDF
导出
摘要 针对传统的差分能量分析(DPA)方法存在的样本规模需求较大以及基于深度学习的旁路模板攻击在计算资源消耗较高,训练周期较长等问题,在介绍了卷积神经网络的实现原理与技术特点、理论分析了传统的差分能量分析方法的实现过程以及选择了合适的数据类别划分规则的基础上,提出了一种基于卷积神经网络的加密芯片差分攻击新方法。通过对运行DES加密算法的微控制器(AT89C52)进行差分分析对比实验,实验结果表明,新方法较传统的差分方法在样本规模需求方面有较大的改善,并且新方法不需要不断地通过加大迭代次数来提高正确匹配率,在计算资源消耗和训练周期方面有所优化。 Due to the large sample size requirement for traditional Differential Power Analysis(DPA)methods and the problem of high computational resource consumption and long training cycles for the deep learning-based side-channel template attack,the implementation principle of convolutional neural networks is introduced.With the technical characteristics and theoretical analysis of the traditional differential energy analysis method in the actual attack,there is a Ghost peaks phenomenon and the appropriate data classification rules are selected.Based on the convolutional neural network,a new method of differential attack is proposed for encryption chips.By performing differential analysis and comparison experiments on the microcontroller running the DES encryption algorithm(AT89C52),the experimental results show that the new method has greatly improved on the sample size requirements,and the new method does not need to continuously increase the number of iterations.Meanwhile,the new method has been optimized in terms of computing resource consumption and training cycle.
作者 郭东昕 陈开颜 张阳 胡晓阳 魏延海 GUO Dongxin;CHEN Kaiyan;ZHANG Yang;HU Xiaoyang;WEI Yanhai(Center of EquipmentSimulationTraining,ShijiazhuangCampus of theArmyEngineeringUniversity,Shijiazhuang 453000,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第21期65-70,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.51377170) 国家青年科学基金(No.61602505)
关键词 差分分析 卷积神经网络 DES加密算法 旁路攻击 differential analysis convolutional neural network DES encryption algorithm side-channel attack
  • 相关文献

参考文献4

二级参考文献33

  • 1陈开颜,赵强,张鹏,邓高明.数据加密标准旁路攻击差分功耗仿真分析[J].计算机测量与控制,2007,15(2):222-223. 被引量:7
  • 2Agrawal D, Archambeault B, Rao J R, et al. The EM side-chan- nel (s): Attacks and assessment methodologies [A]. Proceedings of the 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES 2002), LNCS [C]. vol. 2523: 29-45. Springer, 2003. 被引量:1
  • 3Th. S. Messerges. Using second-order power analysis to attackDPA resistant software [A]. in Cetin K. Koc and Paar, Crypto- graphic Hardware and Embedded Systems- CHES 2000 [C]. Springer-yVerlag, August 2000, Lectures Notes in Computer Sci- ence (LNCS) 1965: 238-251. 被引量:1
  • 4J. Borst. Block Ciphers, Design, Analysis and Side-Channel Anal- ysis [D]. PhD thesis, Department Elektrotechniek, Katholieke Universiteit Leuven, Belgium, Sep 2001. 被引量:1
  • 5Research Center for Information Security, National Institute of Ad- vanced Industrial Science and Technology. Power Analysis Attacks on SASEBO [R], January 6, 2010. 被引量:1
  • 6Michael Tunstall, Neil Hanley, Robert P. McEvoy, et al. Correla- tion Power Analysis of Large Word Sizes [A]. Department of Elec- trical Engineering University College Cork, IRELAND. ISSC 2007 [C]. Derry. September 13-14. 被引量:1
  • 7Dalal N,Triggs B.Histograms of oriented gradients forhuman detection[C]//Proceedings of the 2005 IEEE InternationalConference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2005,1:886-893. 被引量:1
  • 8Wu B,Nevatia R.Optimizing discrimination-efficiencytradeoff in integrating heterogeneous local features forobject detection[C]//Proceedings of the 2008 IEEE InternationalConference on Computer Vision and PatternRecognition.Washington,DC:IEEE Computer Society,2008:1-8. 被引量:1
  • 9Viola P,Jones M.Rapid object detection using a boostedcascade of simple features[C]//Proceedings of CVPR2001,Kauai,HI,USA,2001:511-518. 被引量:1
  • 10Serre T,Wolf L,Bileschi S,et al.Object recognition withcortex-like mechanisms[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2007,29(3):411-428. 被引量:1

共引文献1885

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部