期刊文献+

矿用MEMS甲烷传感器硅微加热器功率优化设计 被引量:3

Power optimization design of silicon microheater of mine-used MEMS methane sensor
下载PDF
导出
摘要 在ANSYS有限元分析软件中对矿用微机电系统(MEMS)甲烷传感器硅微加热器功率进行了优化设计。首先建立了基于已知掺杂浓度求解一定温度范围内硅电阻率的计算模型;然后根据计算结果,利用ANSYS软件对U型双悬臂梁式硅微加热器进行了以掺杂浓度、两悬臂间距、悬臂梁宽度为影响因素的正交试验,研究了不同因素对硅微加热器功率的影响。试验结果表明:悬臂梁宽度和掺杂浓度为硅微加热器功率的主要影响因素,两悬臂间距影响较小;硅微加热器功率随悬臂梁宽度的减小而减小,随掺杂浓度的升高先增大后减小;温度为600℃时,选取悬臂梁宽度为25μm、掺杂浓度为1019 cm-3、两悬臂间距为10μm可使硅微加热器功率最优。 Power optimization design of silicon microheater of mine-used MEMS methane sensor was carried out by use of ANSYS finite element software.Firstly,a calculation model of silicon resistivity within certain temperature range was built on basis of known doping concentration.Then an orthogonal test for dule-cantilever type silicon microheater with U shape was carried out according to the calculated resistivity results in ANSYS software,which took doping concentration,distance between two cantilevers and cantilever width as influence factors,so as to research influence of different factors on power of silicon microheater.The test results show that cantilever width and doping concentration are main factors influencing the power of silicon microheater,while distance between two cantilevers has little influence.The power of silicon microheater decreases with decrease of cantilever width,and increases first then decreases with increase of doping concentration.Power of silicon microheater can achieve the optimal value when cantilever width is 25μm,doping concentration is 10 19 cm-3 and distance between two cantilevers is 10μm at 600℃.
作者 王丽影 秦顺利 马洪宇 WANG Liying;QIN Shunli;MA Hongyu(State-Province United Engineering Laboratory on Mine Internet Application Technology,Xuzhou 221008,China;Internet of Things(Perception Mine)Research Center,China University of Mining and Technology,Xuzhou 221008,China)
出处 《工矿自动化》 北大核心 2018年第10期19-23,共5页 Journal Of Mine Automation
基金 国家重点研发计划资助项目(2017YFC0804403) 江苏省自然科学基金资助项目(BK20161186)
关键词 煤矿安全 MEMS甲烷传感器 硅微加热器 功率优化 掺杂浓度 有限元分析 正交试验 coal mine safety MEMS methane sensor silicon microheater power optimization doping concentration finite element analysis orthogonal test
  • 相关文献

参考文献8

二级参考文献42

共引文献20

同被引文献28

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部