期刊文献+

基于三支决策的谱聚类算法研究 被引量:1

Research on Spectral Clustering Algorithm Based on Three-way Decision
下载PDF
导出
摘要 硬聚类要求聚类的结果必须具有清晰的边界,即每个对象要么属于一个类,要么不属于一个类.然而,将某些不确定的对象强制分配到某个类中往往容易带来较高的决策风险.三支聚类将确定的元素放入核心域中,将不确定的元素放入边界域中延迟决策,可以有效地降低决策风险.本文将三支决策理论与传统的谱聚类算法相结合给出了三支谱聚类的聚类算法.该方法通过修改谱聚类算法的聚类过程并获得任一类簇的上界.然后通过扰动分析从该类簇的上界分离出该类簇的核心域,同时上界与核心域的差值认为是该类簇的边界域.在UCI数据集上的实验结果显示,该方法能有效提高聚类结果的ACC、AS、ARI值,并且降低DBI值. Hard clustering based on the assumption that a cluster must be represented by a set with crisp boundary.However,assigning uncertain points into a cluster will increase decision risk.Three-way clustering assigns the identified elements into the core region and the uncertain elements into the fringe region to reduce decision risk.In this paper,we present a new three-way spectral clustering by combining three-way decision and spectral clustering.In the proposed algorithm,we revise the process of spectral clustering and obtain an upper bound of each cluster.Perturbation analysis is applied to separate the core region from upper bound and the differences between upper bound and core region are regarded as the fringe region of specific cluster.The results on UCI data sets show that such strategy is effective in reducing the value of DBI and improving the values of ACC and AS.
作者 施虹 刘强 王平心 杨习贝 Shi Hong;Liu Qiang;Wang Pingxin;Yang Xibei(School of Computer,Jiangsu University of Science and Technology,Zhenjiang 212003,China;College of Mathematics and Information Science,Hebei Normal University,Shijiazhuang 050024,China)
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期6-13,共8页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(61503160 61572242)
关键词 谱聚类 三支决策 三支聚类 三支谱聚类 spectral clustering three-way decision three-way clustering three-way spectral clustering
  • 相关文献

参考文献5

二级参考文献54

  • 1梁吉业,王俊红.基于概念格的规则产生集挖掘算法[J].计算机研究与发展,2004,41(8):1339-1344. 被引量:57
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3Jain A, Murty M, Flynn P. Data clustering.. A Review[J]. ACM Computing Surveys, 1999,31 (3) : 264-323. 被引量:1
  • 4Fiedler M. Algebraic connectivity of graphs. Czech, Math. J. , 1973,23: 298-305. 被引量:1
  • 5Malik J,Belongie S,Leung T, et al. Contour and texture analysis for image segmentation In Perceptual Organization for Artificial Vision Systems. Kluwer, 2000. 被引量:1
  • 6Weiss Y. Segmentation using eigenvectors: A unified view//International Conference on Computer Vision 1999. 被引量:1
  • 7Shi J,Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) : 888-905. 被引量:1
  • 8Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation [J]. IEEE Trans on PAMI,1993, 15(11):1101-1113. 被引量:1
  • 9Hagen L, Kahng A 13. New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Computer-Aided Design, 1992,11 (9) : 1074-1085. 被引量:1
  • 10Sarkar S, Soundararajan P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22(5) : 504- 525. 被引量:1

共引文献1274

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部