期刊文献+

预训练卷积神经网络模型微调的行人重识别 被引量:10

Pedestrian re-identification based on fine-tuned pre-trained convolutional neural network model
下载PDF
导出
摘要 针对行人重识别中传统的人工提取的行人浅层特征因受摄像机角度、光照等外界环境的影响,鲁棒性不好,收敛速度慢的问题,研究使用预训练卷积神经网络模型在行人数据库上进行微调的方法,对行人图片进行特征提取,从而得到高维的深层行人特征,最后通过欧氏距离进行相似性的度量。实验结果证明,深层的行人特征在平均准确度评估标准上,相比于传统的人工设计特征,分别得到了9.51%、11.12%、16.63%、16.96%的提高,收敛速度也变得更快,说明深层特征的行人识别能力更强。 In order to solve the problem of the low robustness and slow convergence in the way of hand-crafted features extraction due to the influence of the different camera angle and distinct illumination,it uses the pedestrian database to adjust the pre-trained convolutional neural network model,and then calculates the similarity degree by Euclidean distance.Experimental results show that the deep pedestrian features are 9.51%,11.12%,16.63%,16.96%better than the handcrafted features in the mean Average Precision(mAP)and the speed of convergence is faster,it indicates that the deep feature can improve the performance of the pedestrian re-identification.
作者 李锦明 曲毅 裴禹豪 扆泽江 LI Jinming;QU Yi;PEI Yuhao;YI Zejiang(College of Information Engineerng,Engineering University of PAP,Xi’an 710086,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第20期219-222,229,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.6111238)
关键词 行人重识别 卷积神经网络 预训练模型 深层特征 pedestrian re-identification convolutional neural network pre-trained model deep features
  • 相关文献

参考文献5

二级参考文献24

  • 1Dalal N,Triggs B.Histograms of oriented gradients forhuman detection[C]//Proceedings of the 2005 IEEE InternationalConference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2005,1:886-893. 被引量:1
  • 2Wu B,Nevatia R.Optimizing discrimination-efficiencytradeoff in integrating heterogeneous local features forobject detection[C]//Proceedings of the 2008 IEEE InternationalConference on Computer Vision and PatternRecognition.Washington,DC:IEEE Computer Society,2008:1-8. 被引量:1
  • 3Viola P,Jones M.Rapid object detection using a boostedcascade of simple features[C]//Proceedings of CVPR2001,Kauai,HI,USA,2001:511-518. 被引量:1
  • 4Serre T,Wolf L,Bileschi S,et al.Object recognition withcortex-like mechanisms[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2007,29(3):411-428. 被引量:1
  • 5Ye Q,Liang J,Jiao J.Pedestrian detection in video imagesvia error correcting output code classification of manifoldsubclasses[J].IEEE Transactions on Intelligent TransportationSystems,2012,13(1):193-202. 被引量:1
  • 6Munder S,Gavrila D M.An experimental study on pedestrianclassification[J].IEEE Transactions on Pattern Analysisand Machine Computer Vision,2006,28(11):1863-1868. 被引量:1
  • 7Wu B,Nevatia R.Cluster boosted tree classifier for multiview,multi-pose object detection[C]//Proceedings of the11th IEEE International Conference on Computer Vision.Washington,DC:IEEE Computer Society,2007:1-8. 被引量:1
  • 8Bengio Y.Learning deep architectures for AI[J].Foundationsand Trends in Machine Learning,2009,2(1):1-71. 被引量:1
  • 9Dahl G E,Yu D,Deng L,et al.Context-dependent pretraineddeep neural networks for large-vocabulary speechrecognition[J].IEEE Trans on Audio Speech and LanguageProcessing,2012,20(1):30-42. 被引量:1
  • 10Zhang C,Zhang Z.Improving multiview face detectionwith multi-task deep convolutional neural networks[C]//Proceddings of 2014 IEEE Winter Conference on Applicationsof Computer Vision(WACV),2014:1036-1041. 被引量:1

共引文献87

同被引文献99

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部