期刊文献+

多目标显著性区域提取算法

Salient Region Extraction Algorithm for Multi-target
下载PDF
导出
摘要 结合对象估计和超像素分割,提出面向多目标的显著性区域提取算法.首先,应用对象估计对图像中的多目标作初步检测,得到若干个显著性区域的初步结果;然后,再将这些显著性区域与超像素分割的结果作图像拼接,完善这些显著性区域;最后,将图像拼接的结果二值化,作为多目标显著性区域提取的最终结果.结果表明:所提算法可实现面向多目标的显著性区域提取.与3个经典算法的比较结果表明:所提算法在面向多目标显著性区域提取时更优. Combining object estimation and super-pixel segmentation,a salient region extraction algorithm for multi-target was proposed.First,object estimation was used to make a preliminary extraction of multi-target in image,and the preliminary results of several salient regions were obtained.Then,these several salient regions were concatenated with the results of super-pixel segmentation to complete the saliency extraction.Finally,the concatenated regions were binarized as the final results of salient region for multi-target.The results showed that the proposed algorithm can achieve multi-target salient region extraction.The comparison with three classical algorithms indicated that the proposed algorithm is better when it is faced with salient region extraction for multi-target.
作者 孟琭 陈妹雅 MENG Lu;CHEN Mei-ya(School of Information Science&Engineering,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第10期1380-1384,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61101057)
关键词 多目标 显著性区域 对象估计 超像素分割 图像处理 multi-target salient region object estimation super-pixel segmentation image processing
  • 相关文献

参考文献4

  • 1宋熙煜..基于超像素的图像分割技术研究[D].解放军信息工程大学,2015:
  • 2赵丹凤..基于通用对象估计的目标检测与模糊车牌识别算法研究[D].南京邮电大学,2016:
  • 3陈美奂..基于底层特征与高层先验的显著性区域检测算法[D].燕山大学,2015:
  • 4景慧昀,韩琦,牛夏牧.显著区域检测算法综述[J].智能计算机与应用,2014,4(1):38-39. 被引量:6

二级参考文献18

  • 1ITTI L,KOCH C,NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,(11):1254-1259. 被引量:1
  • 2MURRAY N,VANRELL M,OTAZU X. Saliency estimation using a non-parametric low-level vision model[A].2011.433-440. 被引量:1
  • 3HOU X,ZHANG L. Saliency detection:A spectral residual approach[A].2007.1-8. 被引量:1
  • 4BAN S,JANG Y,LEE M. Affective saliency map considering psychological distance[J].Neurocomputing,2011,(11):1916-1925. 被引量:1
  • 5LIU T,SUN J,ZHENG N. Learning to detect a salient object[A].2007.1-8. 被引量:1
  • 6LIU T,YUAN Z,SUN J. Learning to detect a salient object[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,(02):353-367. 被引量:1
  • 7KO B C,NAM J Y. Object-of-interest image segmentation based on human attention and semantic region clustering[J].Journal of the Optical Society of America A: Optics, Image Science, and Vision,2006,(10):2462-2470. 被引量:1
  • 8RUTISHAUSER U,WALTHER D,KOCH C. Is bottom-up attention useful for object recognition[A].2004.30-37. 被引量:1
  • 9ZHANG G X,CHENG M M,HU S M. A shape-preserving approach to image resizing[A].2009.1897-1906. 被引量:1
  • 10EINHAJS ER W,KO^ENIG P. Does luminance-contrast contribute to a saliency map for overt visual attention[J].European Journal of Neuroscience,2003,(05):1089-1097. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部