期刊文献+

随机需求下面向异质费用的云资源调度算法 被引量:6

Heterogeneous cost oriented cloud resource scheduling algorithm for stochastic demand
下载PDF
导出
摘要 采用分布式云构建流媒体服务等高资源消耗系统,既符合应用多区域部署的要求,也能充分利用云中资源保证服务质量,同时还能进行系统预算成本控制.由于各区域云中心费用函数存在差别,分布式云中调度需引入异质费用模型,结合流媒体应用中用户请求高度动态随机的特征,在给定的费用预算下响应尽可能多的用户请求.均值需求模型忽略了资源需求在短时间间隔内的变化细节,导致资源利用率低下.为克服均值需求模型的缺点,采用随机需求模型以捕捉细粒度资源需求,使用通用代价函数描述异质费用模型,建立更具通用性的非线性规划问题模型;为降低求解算法的复杂度,基于动态规划快速获得解的下界,再迭代逼近获取近优解.实验结果表明:相比经典的基于均值的调度算法,在区域数量较大时,平均能额外满足15%的用户请求;随着预算的减少,能额外满足近40%的用户请求;且不受各区域价格函数差异和用户访问需求差异的影响.因此,在构建全球部署的大规模流媒体服务系统时,算法能以较低的计算代价显著增加响应的用户请求量,广泛适应各种不同的云基础设施服务提供商. It is recommended to use a distributed cloud to construct a high resource consumption system such as streaming media service,which not only meets the requirements of multi-region deployment,but can also make full use of the resources in the cloud to ensure the service quality while controlling system budget costs.Make the difference of cost functions in cloud centers sitting in different regions,the heterogeneous cost model should be introduced in distributed cloud oriented scheduling.Given the highly dynamic and random characteristics of user requests in streaming media applications,it is expected to respond to as many user requests as possible under a given cost budget.Mean demand model ignores details of changes in resource requirements over short time intervals,and leads to inefficient use of resources.To overcome the disadvantages of mean demand model,we use a stochastic model to capture the fine-grained information of resource demand,and use a common cost function to describe the heterogeneous cost model,and also establish a general nonlinear programming problem model.To reduce the algorithm complexity,the lower bound of the solution is quickly obtained based on dynamic programming,and then the near optimal solution is obtained by iteratively approximation.The simulation results show that,compared with the classical average demand model based scheduling algorithm,the proposed algorithm can additionally meet 15%more of the user requests when the number of regions is large,and can additionally satisfy up to nearly 40%of the user requests as the budget decreases.The algorithm is not affected by differences in price functions or by user requests statistics across different regions.As a result,when used in globally deployed large-scale streaming media system,the proposed algorithm can significantly increase the number of satisfied user requests with limited computing time,thus is adaptable to a wide range of cloud infrastructure service providers.
作者 刘扬 魏蔚 张伟哲 LIU Yang;WEI Wei;ZHANG Weizhe(College of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China;School of Computer Science and Engineering,Harbin Institute of Technology,Harbin 150001,China)
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2018年第11期116-121,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(U1504607 61472460 61702162) 河南省高校科技创新团队支持计划(17IRTSTHN011) 河南省教育厅科学技术研究重点项目(17A520004) 河南省科技厅科技攻关项目(172102110013)
关键词 随机需求 资源调度 非线性规划 异质费用模型 云计算 stochastic demand resource scheduling nonlinear programming heterogeneous cost model cloud computing
  • 相关文献

参考文献3

二级参考文献47

  • 1李凯,李昆仑,崔丽娟.模型聚类及在集成学习中的应用研究[J].计算机研究与发展,2007,44(z2):203-207. 被引量:7
  • 2神会存,李建华,周来水.三角网格模型顶点法矢与离散曲率计算[J].计算机工程与应用,2005,41(26):12-15. 被引量:26
  • 3胡翠玲,肖军,李勇,吴海桥.复合材料自动铺带技术研究(I)——“自然路径”特性分析及算法[J].宇航材料工艺,2007,37(1):40-43. 被引量:18
  • 4Wang X L, Liu Z H.An energy-aware VMs placement algorithm in cloud computing environment[C]//Intelligent System Design and Engineering Application(ISDEA),2012 Second International Conference on.Piscataway,NJ:IEEE,2012:627-630. 被引量:1
  • 5Yahoo. M45 supercomputing project[EB/OL].Pittsburgh:Carnegie Mellon University,2009[2014-07-04].http://research.yahoo.com/node/1884. 被引量:1
  • 6Google. Google Cluster data V2[EB/OL].California:Googlecode,2011(2014-11-17)[2014-07-04].http://code.google.com/p/googleclusterdata/wiki/ClusterData2011. 被引量:1
  • 7Brown R. Report to congress on server and data center energy efficiency:public law 109-431[J].Lawrence Berkeley National Laboratory,2008:1-137. 被引量:1
  • 8Anil K J. Data clustering:50 years beyond K-means[J].Pattern Recognition Letters,2010,31(8):651-666. 被引量:1
  • 9Zhang W, Yang H I,Jiang H Y,et al.Automatic data clustering analysis of arbitrary shape with K-means and enhanced ant-based template mechanism[C]//36th IEEE Annual International Computer Software and Applications Conference.Washington,D.C.:IEEE Computer Society,2012:452-455. 被引量:1
  • 10Mahajan M, Nimborkor P,Varadarajan K.The planar K-means problem is NP-hard[J].Lecture Notes in Computer Science,2009,5431:274-285. 被引量:1

共引文献19

同被引文献65

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部