期刊文献+

异质网络社区发现研究进展 被引量:2

Survey of community detection in heterogeneous networks
下载PDF
导出
摘要 异质网络将复杂系统中的信息抽象成不同类型的节点和链接关系,不同于同质网络,基于异质网络的社区发现能够挖掘出更加精确的社区结构。异质网络的社区发现通过对异质网络中的多维结构、多模信息、语义信息、链接关系等信息进行建模表示和提取分析,以发现其中相对紧密稳定的社区结构,对网络信息的获取与挖掘、信息推荐以及网络演化预测具有重要的研究价值。首先对社区发现和异质网络进行了简单阐述;随后结合实例介绍了异质网络社区发现的现有研究方法,包括基于主题模型、基于排序和聚类相结合、基于数据重构和基于降维的方法等,并针对各类方法指出了其特点和局限性;最后讨论了当前该领域在结构复杂性、建模复杂性、数据规模等方面面临的挑战。在将来,基于并行化、可扩展、动态增量的研究更能适应当前的变化环境。 Most real systems consist of a large number of interacting,multi-typed components,while most contemporary researches model them as homogeneous networks without distinguishing different types of objects and links in the networks.Compared with homogeneous networks,community detection based on heterogeneous networks could obtain more accurate community structures.By modeling and analyzing various information including multi-dimensional structure,multi-mode information and semantic meaning in heterogeneous networks,community detection is to detect relatively stable community and valuable for network information collection and mining,information recommendations and predicting the evolution of networks.Firstly,this paper introduced the community detection and heterogeneous networks.In community detection of heterogeneous networks,the current mainstream methods included topic model,ranking-based clustering,data reconstruction,dimensionality reduction and so on.This paper summarized the above types of methods and analyzed their performance with practical applications.It also discussed the development trend of the community detection in heterogeneous networks.In the future,researches in the parallel,scalable and incremental dynamic heterogeneous networks will get more attention.
出处 《计算机应用研究》 CSCD 北大核心 2018年第10期2881-2887,共7页 Application Research of Computers
基金 国家自然科学基金资助项目(61402486)
关键词 异质网络 社区发现 网络结构 heterogeneous networks community detection network structure
  • 相关文献

参考文献1

二级参考文献56

  • 1Zhang X S, Wang R S, Wang Y, Wang J, Qiu Y, Wang L, Chen L. Modularity optimization in community detection of complex networks. Europhys. Lett., 2009, 87(3): 38002. 被引量:1
  • 2Liu X, Murata T. Advanced modularity-specialized label propagation algorithm for detecting communities in networks. Physica A, 2010, 389(7): 1493-1500. 被引量:1
  • 3Gao B, Liu T Y, Zheng X, Cheng Q S, Ma W Y. Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In Proc. the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, USA, Aug. 21-24, 2005, pp.41-50. 被引量:1
  • 4Greco G, Guzzo A, Pontieri L. An information-theoretic framework for high-order co-clustering of heterogeneous objects. In Proc. the 15th Italian Symposium on Advanced Database Systems, Torre Canne, Italy, Jun. 17-20, 2007, pp.397-404. 被引量:1
  • 5Long B, Zhang Z F, Wu X Y, Yu P S. Spectral clustering for multi-type relational data. In Proc. the 23rd International Conference on Machine Learning, Pittsburgh, USA, Jun. 25- 29, 2006, pp.585-592. 被引量:1
  • 6Long B, Wu X, Zhang Z, Yu P S. Unsupervised learning on k-partite graphs. In Proc. the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, Aug. 20-23, 2006, pp.317-326. 被引量:1
  • 7Singh A P, Gordon G J. Relational learning via collective matrix factorization. In Proc. the 14th A CM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.650-658, Las Vegas, USA, Aug. 24-27, 2008. 被引量:1
  • 8Singh A P, Gordon C J. A unified view of matrix factorization models. In Proc. the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Antwerp, Belgium, Sept. 15-19, 2008, pp.358-373. 被引量:1
  • 9Cattuto C, Schmitz C, Baldassarri A, Servedio V D P, Loreto V, Hotho A, Grahl M, Stumme C. Network properties of folk-sonomies. AI Communications, 2007, 20(4): 245-262. 被引量:1
  • 10Halpin H, Robu V, Shepherd H. The complex dynamics of collaborative tagging. In Proc. the 16th International Conference on World Wide Web, Banff, Canada, May 8-12, 2007, pp.211-220. 被引量:1

共引文献2

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部