期刊文献+

微生物电化学系统还原CO_2合成甲酸和乙酸 被引量:3

Simultaneous production of formate and acetate from carbon dioxide with microbial electrochemical systems
下载PDF
导出
摘要 从活性污泥中筛选出具有电化学活性的微生物,与电化学系统结合还原CO_2合成甲酸和乙酸。通过扫描电镜(SEM)、PCR和16S r DNA检测菌种,并命名为Clostridium. sp. S。循环伏安扫描(CV)测试菌种具有电化学活性,在-500 m V出现CO_2还原峰。设定阴极电势-900 m V,反应对微生物代谢产生的氢气利用率达到81. 8%,甲酸最大累积浓度为4. 8 mmol/L,乙酸最大累积浓度为7. 76 mmol/L,总库伦效率最大为95. 41%。表明在微生物电化学系统中,生物阴极可以将CO_2还原为多种有机物,确定菌种通过电极直接传递和氢气传递两种方式获得电子,为进一步研究微生物电合成技术提供参考。 The strains screened in activated sludge combine with electrochemical system focused on reduction of CO 2 to formate and acetate.It is named Clostridium.sp.S by SEM,PCR and 16S rDNA detection.The CV test strains have electrochemical activity and show a CO 2 reduction peak at-500 mV.At a set cathode potential of-900 mV in the system,the utilization rate of hydrogen produced by microbial metabolism is up to 81.8%,the maximum concentration of formic acid is 4.8 mmol/L;the maximum concentration of acetate is 7.76 mmol/L;the maximum Coulombic efficiency is 95.41%.It suggests that bio-cathode in MES can convert CO 2 to into various organic compounds,the bacterium obtains the electron through the electrode direct transmission and the hydrogen transmission two kinds of ways,which can provide reference for further study of microbial electrosynthesis technology.
作者 张鹏程 王黎 李洋洋 陈小进 胡宁 HANG Peng-cheng;WANG Li;LI Yang-yang;CHEN Xiao-jin;HU Ning(College of Resource and Environment Engineering,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《应用化工》 CAS CSCD 北大核心 2018年第9期1826-1829,1833,共5页 Applied Chemical Industry
基金 国家自然科学基金(51574185)
关键词 微生物电化学 CO2 H2 甲酸 乙酸 microbial electrochemical carbon dioxide hydrogen formate acetate
  • 相关文献

参考文献5

二级参考文献149

  • 1Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D. Verstraete W, Nealson KH. Microbial ecology meets electrochemistry: electricity-driven and driving communities [J]. ISMEJ, 2007, 1 (1): 9-18. 被引量:1
  • 2Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environ Sei Teehnol, 2004, 38 (7): 2281-2285. 被引量:1
  • 3Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [.I]. Environ Sci Technol, 2005, 39 (22): 8943-8947. 被引量:1
  • 4Tandukar M, Huber SJ, Onodera T, Pavlostathis SG. Biological chromium(VI) reduction in the cathode of a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (21): 8159-8165. 被引量:1
  • 5Li Y, Lu A, Ding H, Jin S, Yah Y, Wang C, Zena C, Wang X . Cr(Vl) reduction at rutile-catalyzed cathode in microbial fuel cells [J]. Electrochem Commun, 2009, II (7): 1496-1499. 被引量:1
  • 6Huang L, Chai X, Chen G, Logan BE. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells [J]. Environ Sci Technol, 2011, 45 (Ill: 5025-5031. 被引量:1
  • 7Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH. Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environ Sci Technol, 2007, 41 (9): 3354-3360. 被引量:1
  • 8Puig S, Serra M, Vilar-Sanz A, Cabre M, Baneras L, Colprim J, Balaguera MD. Autotrophic nitrite removal in the cathode of microbial fuel cells [J]. Bioresource Technol, 2011,102 (6): 4462-4467. 被引量:1
  • 9Zhan G, Zhang L, Li D, Su W, Tao Y, Qian J. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell [J]. Bioresour Technol, 2012, 116:271-277. 被引量:1
  • 10Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M. Microbial reductive dechlorination of trichloroethene to ethenc withelectrodes serving as electron donors without the external addition of redox mediators [J]. Biotechno! Bioeng, 2009, 103 (1): 85-91. 被引量:1

共引文献20

同被引文献29

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部