期刊文献+

噪声不均条件下的模糊C均值聚类算法及应用 被引量:4

Fuzzy C-Means clustering algorithm under noise uneven condition and its application
下载PDF
导出
摘要 随着工业生产和工艺的进步,人们对产品的质量要求越来越高。为提高光缆表面瑕疵分割的效果,克服模糊C均值聚类算法对噪声敏感的不足,提出了一种新的模糊C均值聚类(FCM)的瑕疵图像分割方法。该方法一方面考虑样本的邻域像素信息,使FCM的隶属度函数中包含像素的邻域信息,另一个方面使用一种新的距离度量方式代替传统的欧式距离。利用以上两种方法来增加算法的鲁棒性,此外,通过直方图法给聚类中心赋初值,使分割效果稳定。最后,分别对CCD相机获取的光缆图像添加椒盐噪声和高斯白噪声,使用改进的FCM算法和传统的FCM算法、FCMM算法进行光缆表面瑕疵分割实验。图像和分割正确率的对比实验结果表明,使用改进的FCM算法能更好地克服噪声,精确地将瑕疵从图像上提取出来,瑕疵轮廓更为清晰,提高了光缆表面瑕疵检测的效果。 With the industrial production and technological progress,people on the product quality requirements are getting higher and higher.In order to improve the effect of Fuzzy C-Means clustering algorithm on noise-sensitive fragmentation,a new Fuzzy C-Means(FCM)clustering defective image segmentation method is proposed.The method considers the neighborhood pixel information of the sample on the one hand,the FCM membership function contains the neighborhood information of the pixel,and the other uses a new distance metric instead of the traditional Euclidean distance.The above two methods are used to increase the robustness of the algorithm.In addition,through the histogram method to the cluster center by the initial value,so that the segmentation effect is stable.Finally,the pretreatment of the cable image is added by using the improved FCM algorithm and the traditional FCM algorithm and FCMM algorithm to add the salt and pepper noise and the Gaussian white noise respectively to the cable image acquired by the CCD camera.The comparison of the experimental results and the correctness of the segmentation show that the improved FCM algorithm can better overcome the noise and extract the flaws from the image accurately.The defect profile is clearer and the effect of the flaw detection on the surface of the cable is improved.
作者 王文慧 杨庚 葛炜 刘沛东 钱晨 WANG Wenhui;YANG Geng;GE Wei;LIU Peidong;QIAN Chen(Jiangsu Key Laboratory of Big Data Security&Intelligent Processing,School of Computer Science,Nangjing University of Posts and Telecommunications,Nanjing 210000,China;Jiangsu Hengtong Au Optronics Co.,Suzhou,Jiangsu 215200,China;School of Optoelectronic Engineering,Nangjing University of Posts and Telecommunications,Nanjing 210000,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第19期172-178,共7页 Computer Engineering and Applications
基金 江苏省自然科学基金政策引导类计划-前瞻性联合研究项目(No.2016ZS04) 国家自然科学基金(No.61572263)
关键词 光缆表面 瑕疵分割 模糊C均值聚类 样本邻域像素 欧式距离 fiber-optic cable surface segmentation of defects Fuzzy C-Means clustering sample neighborhood pixel Euclidean distance
  • 相关文献

参考文献6

二级参考文献82

  • 1Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].NY : Plenum, 1981. 被引量:1
  • 2Cheng H D,Jiang X H,Sun Y,et al.Color image segmentation:Advances and prospects[J].Pattern Recognition,2001,34(12):2259-2281. 被引量:1
  • 3Chen Song-can, Zhang Dao-qiang. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J].IEEE Trans on System,Man,and Cybernetics,2004, 34(4) : 1907-1916. 被引量:1
  • 4Rahimi S,Zargham M,Thakre A,et al.A parallel fuzzy C-means algorithm for image segmentation[C]//IEEE Annual Meeting of the Fuzzy Information, 2004,1 : 234-237. 被引量:1
  • 5Szilagyi L,Szilagyi S,Benyo Z.A modified fuzzy C-means algorithm for MR brain image segmentation[C]//LNCS 4633:Image Analysis and Recognition,2007:866-877. 被引量:1
  • 6Xiang S,Nie F,Zhang C S.Learning a Mahalanobis distance metric for data clustering a classification[J].Pattem Recognition,2008,41 (12) :3600-3612. 被引量:1
  • 7Babuska R,van der Veen P J,Kaymak U.Improved covariance estimation for Gustafson-Kessel clustering[C]//IEEE International Conference on Fuzzy Systems , 2002 :1081-1085. 被引量:1
  • 8Wu KL,Yang MS.Alternative c-means clustering algorithms.Pattern Recognition,2002,35(10):2267-2278.[doi:10.1016/S0031-3203(01)00197-2]. 被引量:1
  • 9Xing EP,Ng AY,Jordan MI,Russell S.Distance metric learning with application to clustering with side-information.In:Becker S,Thrun S,Obermayer K,eds.Advances in Neural Information Processing Systems 15.Cambridge:MIT Press,2002.505-512. 被引量:1
  • 10Bar-Hillel A,Hertz T,Shental N,Weinshall D.Learning a mahalanobis metric from equivalence constraints.Journal of Machine Learning Research,2005,6:937-965. 被引量:1

共引文献195

同被引文献64

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部