期刊文献+

基于流形学习的约束Laplacian分值多标签特征选择 被引量:9

Manifold learning based constraint Laplacian score multi-label feature selection
下载PDF
导出
摘要 多标签特征选择是针对多标签数据的特征选择技术,提高多标签分类器性能的重要手段。提出一种基于流形学习的约束Laplacian分值多标签特征选择方法(Manifold-based Constraint Laplacian Score,M-CLS)。方法分别在数据特征空间和类别标签空间定义两种Laplacian分值:在特征空间利用逻辑型类别标签的相似性对邻接矩阵进行改进,定义特征空间的约束Laplacian分值;在标签空间基于流形学习将逻辑型类别标签映射为数值型,定义实值标签空间的Laplacian分值。将两种分值的乘积作为最终的特征评价指标。实验结果表明,所提方法性能优于多种多标签特征选择方法。 Multi-label feature selection is a feature selection technique based on multi-label data,which is an important means to improve the performance of multi-label classifiers.This paper proposes a Manifold-based Constraint Laplacian Score(M-CLS)feature selection method.The proposed method defines two kinds of Laplacian scores in two different spaces,namely the data feature space and label space.In the feature space,the similarity of the logical labels is used to modify the adjacency matrix,and a constraint laplacian score is defined.In the label space,the logical labels are extended to the numeric labels through manifold learning,and a Laplacian score is defined based on the real values of labels.The product of the two scores is the final feature evaluation index.Experiments show that the proposed method outperforms several multi-label feature selection methods.
作者 蒋伟东 黄睿 JIANG Weidong;HUANG Rui(School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第19期147-150,共4页 Computer Engineering and Applications
基金 上海市自然科学基金(No.16ZR1411100)
关键词 多标签分类 特征选择 多标签流形学习 Laplacian分值 multi-label classification feature selection multi-label manifold learning Laplacian score
  • 相关文献

参考文献4

二级参考文献58

  • 1WANG JinCheng,ZHANG YuXiang,YANG YuJuan,LI JunJie,YANG GenCang.Phase field modeling for dendritic morphology transition and micro-segregation in multi-component alloys[J].Science China(Technological Sciences),2009,52(2):344-351. 被引量:3
  • 2HANJIAWEI,MICHELINEK.Dataminingconceptsandtech-niques[M].2版.北京:机械工业出版社,2007. 被引量:1
  • 3HUA JIANPING, TEMBE W D, DOUGHERTY E R. Performance of feature selection methods in the classification of high-dimension data[ J]. Pattern Recognition, 2009, 42(3) : 409 - 424. 被引量:1
  • 4GUNAL S, GEREK O N, ECE D G, et al. The search for optimal feature set in power quality event classification[ J]. Expert Systems with Applications, 2009, 36(7) : 10266 - 10273. 被引量:1
  • 5YI LIU, ZHENG YUAN. FS_SFS: A novel feature selection method for support vector machines[ J] 1333 - 1345. Pattern Recognition, 2006, 39 (7). 被引量:1
  • 6KIRA K, RENDELL L. The feature selection problem: Traditional methods and a new algorithm[ C]//Proceedings of the Ninth Nation- al Conference on Artificial Intelligence. New Orleans: AAAI Press, 1992:129 - 134. 被引量:1
  • 7KONONENKO I. Estimating attributes: Analysis and extensions of RELIEF[ C]// Proceedings of the 1994 European Conference on Machine Learning, LNCS 784. Berlin: Springer, 1994:171-182. 被引量:1
  • 8ROBNIK--IKONJAM, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF [ J]. Machine Learning, 2003, 53 (1/2) : 23 -69. 被引量:1
  • 9ZHANG MIN-LING, ZHOU ZHI-HUA. ML-KNN: A lazy leaming approach to multi-label learning[ J]. Pattern Recognition, 2007, 40 (7) : 2038 -2048. 被引量:1
  • 10ZHOU ZHI-HUA, ZHANG MIN-LING, HUANG SHENG-JUN, et al. Multi-instance multi-label learning [ J]. Artificial Intelligence,2012,176(1): 2291 -2320. 被引量:1

共引文献104

同被引文献16

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部