期刊文献+

复杂网络中基于反应式的危险抑制方法

An Risk Suppression Approach Based on Reaction in Complex Network
下载PDF
导出
摘要 复杂网络中的危险传播行为依赖于网络拓扑结构和节点的动态特性.网络拓扑结构与危险传播的动力学机制是分离的,因此需要结合节点的动态信息来分析网络中的危险传播机理.本文针对该问题提出一种复杂网络中基于反应式的危险抑制方法,该方法主要针对节点当前的感染模式,采取相应的免疫策略进行防护.通过仿真实验表明,本文提出的免疫策略可以更加有效地抑制复杂网络中的危险传播. Risk propagation in the complex network depends on the topological structure of the network and the dynamic characteristics of the nodes.Since the topological structure is often separated from the dynamics mechanism of risk spreading,the dynamic information of the nodes should be used to analyze the propagation mechanism.In this paper,we propose a risk suppression approach based on the reaction mechanism for the complex network.This approach applies the appropriate strategy of vaccine immunization according to the current infection pattern of the node.Finally,the simulation experiment shows that the immunization strategy proposed in this paper is more effective when dealing with the risk spreading in the complex network.
作者 田屏 TIAN Ping(School of Information Engineering,Zunyi Normal University,Zunyi Guizhou 563000,China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2018年第9期60-64,共5页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 复杂网络 免疫策略 危险传播 感染模式 complex network immunization strategy risk spreading infection pattern
  • 相关文献

参考文献5

二级参考文献133

  • 1周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:72
  • 2谭跃进,吴俊,邓宏钟.复杂网络中节点重要度评估的节点收缩方法[J].系统工程理论与实践,2006,26(11):79-83. 被引量:257
  • 3L R De. Models of complex networks and how diseases spreadon them[C]. Perpignan, FrancetSpringer, 2006-5:456-458. 被引量:1
  • 4Solomonoff R,Rapoport A.Connectivity of random nets[J].The Bulletin of Mathematical Biophysics,1951,13(2):107-117. 被引量:1
  • 5Solomonoff R.An exact method for the computation of the connectivity of random nets[J].The Bulletin of Mathematical Biophysics,1952,14(2):153-157. 被引量:1
  • 6Erds P,Rényi A.On random graphs,I[J].Publicationes Mathematicae,1959,6:290-297. 被引量:1
  • 7Erds P,Rényi A.On the evolution of random graphs[J].Publications of the Mathematical Institute of the Hungarian Academy of Sciences,1960,5:17-61. 被引量:1
  • 8Erds P,Rényi A.On the strength of connectedness of a random graph[J].Acta Mathematica Hungarica,1961,12(1-2):261-267. 被引量:1
  • 9Watts D J,Strogatz S H.Collective dynamics of‘small-world’networks[J].Nature,1998,393(6684):440-442. 被引量:1
  • 10Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512. 被引量:1

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部