期刊文献+

基于MobileNet的敏感图像识别系统设计 被引量:6

Design of sensitive image recognition system based on Mobile Net
下载PDF
导出
摘要 目前人工智能技术已经渗透到媒体日常生产的全部环节,研究面向内容安全的图像识别技术,对网络中的违法不良图像信息进行识别和监管,具有重要的现实意义。本设计利用深度可分离卷积神经网络和MobileNet模型,配合cuDNN的GPU并行计算架构,对构建的敏感图像数据集进行训练。保存训练完成的模型,对敏感图像实现较高准确度的识别。 At present,the artificial intelligence technology has penetrated into all aspects of daily media production.It has important realistic significance to research image recognition technology oriented content security,identify and regulate illegal information of the network.This paper uses deep separable convolution neural network,MobileNet model,GPU parallel computing architecture in combination with cuDNN to train the constructed sensitive image data sets.After saving the trained model,a high accurate recognition to sensitive images is realized.
作者 邢艳芳 卓文鑫 段红秀 XING Yanfang;ZHUO Wenxin;DUAN Hongxiu(Nanguang College of Communication University of China,Nanjing 211172,China)
出处 《电视技术》 2018年第7期53-56,共4页 Video Engineering
基金 江苏省高等学校自然科学研究面上资助项目(17KJB510054)--人工智能在传媒领域内容监管中的应用研究
关键词 MobileNet模型 深度可分离卷积神经网络 GPU加速 MobileNet model deep separable convolutional neural networks GPU acceleration
  • 相关文献

参考文献10

二级参考文献88

  • 1Alex Krizhevsky, Ilya Sutskever, Geoff Hinton. Imagenet classification with deep con-volutional neural networks[J]. Advances in Neural Information Processing Systems 25, 2012:1106-1114. 被引量:1
  • 2DH Hubel,TN Wiesel. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex[J]. Journal of Physi- ology(London), 1962,160 : 106-154. 被引量:1
  • 3K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in po- sition[J]. Biological Cybernetics, 1980, 36:193-202. 被引量:1
  • 4Y. I~ Cun, L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86( 11 ) :2278-2324. 被引量:1
  • 5Y. LeCun, B. Boser, J. S. Denker, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4): 541-551. 被引量:1
  • 6Yoshua Bengio, Learning Deep Architectures for AI[J]. Machine Learning, 2009,2( 1 ) : 1-127. 被引量:1
  • 7Glorot X, Bordes A,Bengio, Y. Deep sparse rectifier networks[C]. Proceedings of the 14th International Conference on Artificial Intelli- gence and Statistics. JMLR W&CP Volume, 2011,15:315-323. 被引量:1
  • 8Yoshua Bengio, Aaron Courville, and Pascal Vincent, representation learning: A review and new rerspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, Issue No.08 - Aug. (2013 vol.35):1798-1828. 被引量:1
  • 9IA Yang-qing, Shelhamer Evan, Donahue Jeff, et al. caffe: convolutional architecture for Fast feature embedding[EB/OL]. 2014, arXiv preprint arXiv: 1408.5093. 被引量:1
  • 10Know your meme: We need to go deeper [EB/OL] [2014-12-01]. http://knowyourmeme.com/memes/we-need-to-go-deeper. 被引量:1

共引文献765

同被引文献40

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部