期刊文献+

基于RBF神经网络的Android恶意行为识别 被引量:1

Android malicious behavior recognition based on RBF neural network
下载PDF
导出
摘要 传统Android恶意行为识别方法无法解决恶意行为特征的动态波动性,识别出的恶意行为精度差,并且需要耗费大量的时间,因此提出基于RBF神经网络的Android恶意行为识别方法。该方法首先进行Android恶意行为的样本采集、行为特征提取和数据整合,使输出的结果可以被RBF神经网络识别,然后采用RBF神经网络局部逼近的特点提高学习速度,增强神经网络结果的输出质量,并采用K均值聚类算法得到所有特征集中各样本到该特征集中心距离的平方和,取该距离的最小值,通过最小二乘递推法计算隐含层节点到数据输出层节点的权值,完成RBF神经网络的训练,实现Android恶意行为的准确识别。实验结果说明所提方法可以提高对Android恶意行为识别的正确率和效率。 The traditional Android malicious behavior recognition method can′t solve the dynamic fluctuations of malicious behavior characteristics,has poor accuracy of malicious behavior recognition,and spends a large amount of time.Therefore,the Android malicious behavior recognition method based on RBF neural network is proposed.The items of sample acquisition of Android malicious behavior,behavior feature extraction and data integration are carried out to make that the output result can be identified by RBF neural network.The local approximation characteristic of RBF neural network is adopted to improve the output quality of neural network and learning speed.The K-means clustering algorithm is adopted to get the quadratic sum of distances from each sample in the feature set to the center of the feature set,so as to obtain the minimum distance.The least square recursive method is used to calculate the weight from the node of hidden layer to the node of data output layer,accomplish the training of RBF neural network,realize the accurate identification of Android malicious behavior.The experimental results show that the proposed method can improve the accuracy and efficiency of Android malicious behavior recognition.
作者 陈天伟 CHEN Tianwei(University of Electronic Science and Technology of China,Chengdu 610101,China;Urban Vocational College of Sichuan,Chengdu 610110,China)
出处 《现代电子技术》 北大核心 2018年第15期83-86,91,共5页 Modern Electronics Technique
基金 四川省教育厅重点科研项目(17ZA0236)~~
关键词 RBF神经网络 Android恶意行为 识别 特征集 局部逼近 权值 RBF neural network Android malicious behavior recognition feature set local approximation weight
  • 相关文献

参考文献10

二级参考文献145

  • 1何勇枢,陈赣.基于BP神经网络模型的故障预测分析[J].微计算机信息,2006(06S):220-222. 被引量:20
  • 2刘俊萍,严敏,胡坚,王亚宜.基于径向基函数神经网络的污水生物处理模拟[J].计算机系统应用,2006,15(12):51-53. 被引量:1
  • 3刘安,刘春生.基于RBF神经网络的非线性系统故障诊断[J].计算机仿真,2007,24(2):141-144. 被引量:19
  • 4唐湘燕,陈效华.基于神经网络的火炮自动供输弹装置故障预测[J].火炮发射与控制学报,2007,28(1):54-58. 被引量:11
  • 5LAMPINEN J, VEHTATI A. Bayesian approach for neural networks: review and case studies[J]. Neural Networks, 2001, 14(3): 257-274. 被引量:1
  • 6ZHANG Jiye, SUDA Y, IWASA T. Absolutely exponential stability of a class of neural networks with unbounded delays [ J ]. Neural Networks, 2004, 17(3) : 391-397. 被引量:1
  • 7SHAO Jinliang, HUANG Tingzhu, ZHOU Sheng. Some improved criteria for global robust exponential stability of neural networks with time-varying delays [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15 (12) : 3782-3794. 被引量:1
  • 8ZHANG Huaguang, WANG Zhanshan, LIU Derong. Global asymptotic stability of recurrent neural networks with multiple time-varying delays [ J]. IEEE Trans- actions on Neural Networks, 2008, 19(5) : 855-873. 被引量:1
  • 9LIN Da, WANG Xingyuan. Self-organizing adaptive fuzzy neural control for the synchronization of uncertain chaotic systems with random-varying parameters [ J]. Neurocomputing, 2011, 74( 12/13): 2241-2249. 被引量:1
  • 10HUANG Yujiao, ZHANG Huaguang, WANG Zhanshan. Dynamical stability analysis of multiple equilibrium points in time-varying delayed recurrent neural networks with discontinuous activation functions[ J]. Neurocomputing, 2012, 91 ( 1 ) : 21-28. 被引量:1

共引文献214

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部