期刊文献+

基于随机森林的疲劳驾驶检测识别模型的优化研究 被引量:3

Research on optimization of driving fatigue prediction model based on Random Forest
下载PDF
导出
摘要 与传统基于驾驶员行为的疲劳检测手段相比,基于驾驶员生理指标的驾驶疲劳检测是一种更加客观准确的检测方法,但由于生理信息复杂度高,传统生理指标疲劳检测模型效果不佳且实时性差。随机森林是一种收敛速度快,可处理复杂特征向量样本,高效精准的分类算法。文章在驾驶员生理指标检测基础上,提出一种应用随机森林模型进行疲劳驾驶检测识别的方法,并通过粒子群优化算法和设置阈值修剪错误决策树方式对随机森林模型进行优化,以提高精度和效率。仿真实验结果表明,优化后检测精准确度高达98%,运行效率提高50%。 Compared with the traditional detection methods,the driver's physiological indicators of fatigue driving test is a more objective and accurate detection method.Due to the complexity of physiological information,fatigue testing model of traditional physiological indicators is not good enough to be real-time.Random Forest(RF)is a fast-convergence,efficient and accurate classification algorithm,it can handle complex eigenvector samples.Based on the detection of physiological indicators of pilots,this paper proposes a method to detect fatigue driving based on Random Forest model.To improve the detection accuracy and operational efficiency,set the threshold to prune the error decision tree of the Random Forest,and the Particle swarm optimization(PSO)is also used to optimize the parameters of model.The simulation results show that the optimized detection accuracy reaches 98%and the running speed increases by 50%.
作者 叶建芳 刘强 李雪莹 Ye Jianfang;Liu Qiang;Li Xueying(Engineering Research Center of Digital Textile and Garment Technology,Shanghai 201620;College of Information Science&Technology,Donghua University,Shanghai 201620)
出处 《汽车实用技术》 2018年第13期39-43,共5页 Automobile Applied Technology
基金 东华大学非线性科学研究所基金资助项目(20160905-3)
关键词 疲劳驾驶 生理指标检测 复杂特征向量 随机森林 粒子群优化 fatigue driving physiological index detection complex eigenvector random forest particle swarm optimization
  • 相关文献

参考文献4

二级参考文献40

  • 1张华伟,王明文,甘丽新.基于随机森林的文本分类模型研究[J].山东大学学报(理学版),2006,41(3):5-9. 被引量:58
  • 2Quinlan J R.C4.5:Programs for Machine Learning,1993. 被引量:1
  • 3BREIMAN L,FREIDMAN J,OLSHEN R. Classification and regression trees[M].Belmont(CA):Wadsworth International Group,1984.358. 被引量:2
  • 4BREIMAN L. Random forests[J].{H}Machine Learning,2001,(45):5-32. 被引量:2
  • 5Quinlan J R. Induction of decision trees[J].Machine Learning,1986,(01):81-106. 被引量:1
  • 6Cortes C,Vapnik V. Support-vector networks[J].Machine Learning,1995,(03):273-297. 被引量:1
  • 7Breiman L. Bagging predictors[J].Machine Learning,1996,(02):123-140. 被引量:1
  • 8Ho T. The random subspace method for constructing decision forests[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,(08):832-844.doi:10.1109/34.709601. 被引量:1
  • 9Chen X,Liu M. Prediction of protein-protein interactions using random decision forest framework[J].Bioinformatics,2005,(24):4394-4400.doi:10.1093/bioinformatics/bti721. 被引量:1
  • 10Pang H,Datta D,Zhao H. Pathway analysis using random forests with bivariate node-split for survival outcomes[J].Bioinformatics,2010,(02):250-258. 被引量:1

共引文献147

同被引文献28

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部