期刊文献+

基于讨论组和自主学习的教与学优化算法 被引量:4

Teaching-learning-based optimization algorithm based on discussion group and self-learning
下载PDF
导出
摘要 教与学优化算法(teaching-learning-based optimization,TLBO)是一种模仿教学过程的新型启发式优化算法。针对TLBO算法寻优精度低、稳定性差的特点,提出了基于讨论组和自主学习的教与学优化算法DSTLBO(discussion group and self-learning TLBO)。在原TLBO算法的"教"阶段当中加入了小组讨论,随机将全体同学分成若干组,通过组内学生向本组中学习最好的组长学习,提高了算法的局部开发和寻优能力;组长受老师和组内同学影响进行变异,提高了算法的探索能力;在"教""学"阶段后,每个学生进入自我学习阶段,从而提高了算法的全局搜索能力。通过对八个复杂的Benchmark函数的测试表明:DSTLBO算法与基本TLBO算法和其经典改进算法ETLBO算法相比,在寻优精度、稳定性和收敛速度方面更具优势。 TLBO is a new heuristic optimization algorithm that imitates the teaching process.Aiming at the low precision and poor stability of TLBO algorithm,this paper proposed an improved teaching-learning-based optimization algorithm named DSTLBO TLBO based on discussion group and autonomous learning.In the process of teaching,it added the group discussion mechanism into the TLBO,and divided randomly all the students into several groups.The students in the group learned from the group monitor,and then which improved the local search ability of the algorithm.And the mutation of the group monitors enhanced the ability to explore the algorithm.After the“teaching”and“learning”phases,all students got into the self-learning which improved the global optimization ability of the algorithm.Finally,it used 8 complex benchmark functions to test the algorithm and compared the performance of the algorithms.The resualt showes that DSTLBO algorithm has advantages over TLBO and ETLBO in optimizing precision,stability and convergence speed.
作者 吴聪聪 贺毅朝 陈嶷瑛 张祖斌 刘雪静 Wu Congcong;He Yichao;Chen Yiying;Zhang Zubin;Liu Xuejing(College of Information Engineering,Hebei GEO University,Shijiazhuang 050031,China;College of Computer Science,Sichuan University,Chengdu 610065,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第5期1386-1389,1407,共5页 Application Research of Computers
基金 河北省高等学校科学研究计划资助项目(ZD2016005) 河北省自然科学基金资助项目(F2016403055)
关键词 教与学优化算法 讨论组 自主学习 变异 teaching-learning-based optimization algorithms discussion group self-learning mutation
  • 相关文献

参考文献2

二级参考文献31

  • 1潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 2金欣磊,马龙华,吴铁军,钱积新.基于随机过程的PSO收敛性分析[J].自动化学报,2007,33(12):1263-1268. 被引量:38
  • 3王小群,徐俊.微型热电制冷器制造技术及其性能[J].制冷学报,2007,28(6):41-46. 被引量:5
  • 4GOLDBERG D E. Genetic algorithms in search optimization and machine learning[M].Boston:Addison-Wesley,1989. 被引量:1
  • 5FARMER J D,PACKARD N,PERELSON A. The immune system,adaptation and machine learning[J].Physical Review D,1986,(1-3):187-204. 被引量:1
  • 6MANIEZZO D M,COLORNI V. A The ant system:optimization by a colony of cooperating agents[J].IEEE Trans on Systems Man and Cybernetics B,1996,(01):29-41. 被引量:1
  • 7EBERHART R C,KENNEDY J. A new optimizer using particle swarm theory[A].1995.39-43. 被引量:1
  • 8MEZURA-MONTES E,MIRANDA-VARELA M E,Del GóME-RAMóN R. Differential evolution in constrained numerical optimization:an empirical study[J].Information Sciences,2010,(22):4223-4262. 被引量:1
  • 9GEEM Z W,KIM J H,LOGANATHAN G V. A new heuristic optimization algorithm:harmony search[J].Simulation,2001,(02):60-70. 被引量:1
  • 10PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine,2002,(03):52-67.doi:10.1109/MCS.2002.1004010. 被引量:1

共引文献83

同被引文献32

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部