摘要
针对水下传感器网络误码率高,能量效率低等问题,基于有限马尔可夫链状态空间分析,提出一种水声传感器网络协作中继算法。该算法采用马尔可夫链状态空间获取协作节点的误码率和能量的状态转移概率。基于能量策略对中转节点进行判定,使网络优先保障对已采集的数据进行传输,提升传输效率。提出基于最佳中继选择的协作节点状态评价函数,使网络优先选择评价结果最高的协作节点作为转发节点,减少数据传输过程中的误码率和能量损耗。实验仿真结果表明,该算法相比基于增强型能源平衡数据传输的水声网络协议及水下网络自适应路由协议,数据包平均成功投递率分别提升了2.3%和3.1%,网络能量效率分别提升了10.6%和5.8%,在提升数据传输效率和减少网络能耗上具有较好效果。
In order to address the high error rate and low energy efficiency on underwater sensor network,a collaborative relaying algorithm on underwater acoustic sensor networks is proposed based on the analysis of Markov chain state space.Firstly,the algorithm obtains the error rate and the energy state of the cooperative node by Markov chain state space.Then based on the energy policy to determine the transit node,so that the network gives priority to the data transmission which has been collected to enhance the transmission efficiency.Finally,the cooperative node state evaluation function based on the optimal relay selection is proposed,which makes the network select the cooperative node with the highest evaluation result as the forwarding node,and reduces the bit error rate and energy loss in the data transmission process.Experimental results show that,the algorithm compared with the underwater network adaptive protocol and underwater acoustic network protocol based on enhanced energy balance data transmission,the average packet delivery success rate is improved by 2.3%and 3.1%respectively,and the network energy efficiency is increased by 10.6%and 5.8%respectively,which has good results in improving the efficiency of data transmission and reducing network energy consumption.
作者
潘志宏
万智萍
谢海明
PAN Zhihong;WAN Zhiping;XIE Haiming(Xinhua College of Sun Yat-sen University,Guangzhou 510520,China;Maoming Branch,Guangdong Mobile Communication Co.,Ltd.,Maoming,Guangdong 525000,China)
出处
《计算机工程与应用》
CSCD
北大核心
2018年第10期121-125,共5页
Computer Engineering and Applications
基金
广东省普通高校青年创新人才项目(自然科学)(No.2016KQNCX222
No.2014KQNCX253)
关键词
水声传感器网络
协作中继
有限马尔可夫链
中转节点
状态评价函数
underwater acoustic sensor network
cooperative relay
finite Markov chain
transit node
state evaluation function