期刊文献+

Mineral structure and crystal morphologies of high-iron hydrargillite 被引量:1

Mineral structure and crystal morphologies of high-iron hydrargillite
下载PDF
导出
摘要 Various characterization methods, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller surface-area measurements, thermogravimetry–differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy, were used to study the mineral structure and surface characteristics of high-iron hydrargillite. Gibbsite, goethite, and hematite were found to be the main mineral components of hydrargillite, whereas the goethite and hematite were closely clad to the surface of the multilayer gibbsite crystals. Compared with the synthetic gibbsite, the hydrargillite contained more structural micropores generated by the mineral evolution during the mineralization process. The gibbsite in hydrargillite contained less crystal water compared with the synthetic gibbsite, and it was a typical polymorphic structure. The isomorphous substitution of Al and Fe was observed in goethite. The dissolution-controlling step of hydrargillite was the ionic diffusion speed because of the goethite and hematite that closely covered and encapsulated the gibbsite crystals. Various characterization methods, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller surface-area measurements, thermogravimetry–differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy, were used to study the mineral structure and surface characteristics of high-iron hydrargillite. Gibbsite, goethite, and hematite were found to be the main mineral components of hydrargillite, whereas the goethite and hematite were closely clad to the surface of the multilayer gibbsite crystals. Compared with the synthetic gibbsite, the hydrargillite contained more structural micropores generated by the mineral evolution during the mineralization process. The gibbsite in hydrargillite contained less crystal water compared with the synthetic gibbsite, and it was a typical polymorphic structure. The isomorphous substitution of Al and Fe was observed in goethite. The dissolution-controlling step of hydrargillite was the ionic diffusion speed because of the goethite and hematite that closely covered and encapsulated the gibbsite crystals.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第5期505-514,共10页 矿物冶金与材料学报(英文版)
基金 financially supported by the National Natural Science Foundation of China (No.51104041)
关键词 hydrargillite GOETHITE GIBBSITE MINERAL structure CRYSTAL MORPHOLOGIES hydrargillite goethite gibbsite mineral structure crystal morphologies
  • 相关文献

参考文献6

二级参考文献70

共引文献57

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部