期刊文献+

非Lipschitz条件下由G-布朗运动驱动的随机泛函微分方程解的存在唯一性

Existence and Uniqueness of the Solution to a Stochastic Functional Differential Equation Driven by G-Brownian Motion under Non-Lipschitz Condition
下载PDF
导出
摘要 文章研究了由G-布朗运动驱动的随机泛函微分方程,在非Lipschitz条件和弱化的线性增长条件下,利用Picard迭代法证明了其解的存在性和唯一性. The stochastic functional differential equation driven by G-Brownian motion is studied in this paper.The exist-ence and uniqueness of its solution under non-Lipschitz condition and a weakened linear growth condition are obtained by means of the Picard approximation.
作者 梁青 LIANG Qing(School of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China)
出处 《海南师范大学学报(自然科学版)》 CAS 2018年第1期81-85,共5页 Journal of Hainan Normal University(Natural Science)
基金 海南省自然科学基金(117096)
关键词 G-布朗运动 随机泛函微分方程 非LIPSCHITZ条件 G-Brownian motion stochastic functional differential equation non-Lipschitz condition
  • 相关文献

参考文献4

二级参考文献14

  • 1秦衍,夏宁茂,高焕超.非线性随机微分方程终值问题的适应解和连续依赖性[J].应用概率统计,2007,23(3):273-284. 被引量:5
  • 2Mao X. Stochastic Differential Equations and Applications[M]. Harwood, New York, 1997. 被引量:1
  • 3Mao X. Numerical solutions of stochastic functional differential equations[J]. LMS J Comput Math, 2003, 6: 141-161. 被引量:1
  • 4Buckwar E. One-step approximations for stochastic functional differential equations[J]. Applied Numerical Mathematics, 2006, 56: 667-681. 被引量:1
  • 5Mao Wei. Stochastic functional differential equations with markovian switching and nomLipschitz coefficients[J]. International Journal of Pure and Applied Mathematics, 2010, 63: 63-73. 被引量:1
  • 6Marija M, Miljana J, Svetlana J. An approximate method via Taylor series for stochastic functional differential equations[J]. Journal of Mathematical Analysis and Applications, 2010, 363: 128-137. 被引量:1
  • 7S.-E. A. Mohammed Stochastic Functional Differential Equations[M]. Longman Scientific and Tech- nical, New York (1986). 被引量:1
  • 8Mao X: Razumikhin-type theorems on exponential stability of stochastic functional differential equations[J]. Stochastic Processes and their Applications, 1996, 65: 233-250. 被引量:1
  • 9Shen Y, Luo Q, Mao X. The improved LaSalle-type theorems for stochastic functional differential equations[J]. Journal of Mathematical Analysis and Applications, 2006, 318: 134-154. 被引量:1
  • 10Kai Liu. Uniform stability of autonomous linear stochastic functional differential equations in infinite dimensions[J]. Stochastic Processes and their Applications, 2005, 115: 1131-1165. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部