期刊文献+

基于粒子群算法优化BP神经网络的SRM磁链模型 被引量:6

SRM Flux Linkage Model of Optimizing BP Neural Network Based on PSO Algorithm
下载PDF
导出
摘要 以一台6/4级SRM电机模型的电流和磁链为输入,转子位置角度为输出,拟合了磁链-电流-角度模型,并在MATLAB/Simulink中进行了仿真实验。在拟合模型时,为了提高训练效率,简化拟合模型,采用了粒子群优化BP神经网络隐含层神经元个数的算法,并进行了仿真实验。结果表明,粒子群算法优化BP神经网络的控制策略具有较高的训练效率。 This paper takes the current and flux linkage of 6/4 SRM motor as the input and its rotor position angle as the output to fit the flux-current-angle model and makes an experiment on its simulation in MATLAB/Simulink.To improve the training efficiency and simplify the fitting model,according to PSO algorithm,the number of neurons of double hidden layers of BP neural network is optimized and the results show that it has higher training result.
作者 郝娟 HAO Juan(College of Energy and Electrical Engineering,Hohai University,Nanjing 211100,China)
出处 《机械制造与自动化》 2018年第2期130-132,共3页 Machine Building & Automation
关键词 开关磁阻电机 BP神经网络 粒子群算法 switched reluctance motor BP neural network PSO algorithm
  • 相关文献

参考文献7

二级参考文献24

  • 1夏长亮,祁温雅,杨荣,史婷娜.基于混合递阶遗传算法和RBF神经网络的超声波电动机自适应速度控制[J].电工技术学报,2004,19(9):18-22. 被引量:13
  • 2夏长亮,王明超,史婷娜,郭培健.基于神经网络的开关磁阻电机无位置传感器控制[J].中国电机工程学报,2005,25(13):123-128. 被引量:71
  • 3周素莹,林辉.基于神经网络的开关磁阻电机转子位置估计[J].微电机,2006,39(2):16-18. 被引量:4
  • 4Krishnan R. Sensorless operation of SRM drives: R & D status[C]. Denver, CO USA: IEEE Industrial Electronics Society Annual Conference, 2001. 被引量:1
  • 5Xu Longya, Wang Chuanyang. Accurate rotor position detection and sensorless control of SRM for super-high speed operation[J]. IEEE Transactions on Power Electronics, 2002, 17(5): 757-763. 被引量:1
  • 6Bellini A, Flipetti F, Franceschini G et al. Position sensorless control of a SRM drive using ANN-techniques[C]. St. Louis, MO USA: IEEE Industry Applications Society Annual Meeting, 1998. 被引量:1
  • 7Mese E, Torry D A. An approach for sensorless position estimation for switched reluctance motors using artificial neural networks[J]. IEEE Transaction on Power Electronics, 2002, 17(1): 66-75. 被引量:1
  • 8Soares F, Costa Branco P J. Simulation of a 6/4 switched reluctance motor based on matlab/simulink environment[J]. IEEE Transaction on Aerospace and Electronic Systems, 2001, 37(3): 989-1009. 被引量:1
  • 9Cui Yulong, Wnag Xiang, Liu Chaoying et al. The simulation study of the switched reluctance motor's nonlinearized model[C]. Xi'an:IEEE Proceeding of the Second International Conference on Machine Learning and Cybernetics, 2003. 被引量:1
  • 10BELLINIA A, FLIPETI'I F, FRANCESCHINI G, et al. Position sensor- less control of a SRM drive using ANN - Techniques. Proc. IEEE IAS Annu. Meeting, 1998. 被引量:1

共引文献89

同被引文献42

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部