期刊文献+

人体行为序列化识别算法研究 被引量:5

Research on human behavior serialization recognition based on skeleton graph
下载PDF
导出
摘要 针对传统方法在人体行为识别方面拓展性不强等问题,提出一种序列化的研究思想,提取骨骼图的特征矢量,用SVM训练和识别静态动作,形成序列即可表示动态动作,因此只要丰富静态动作库,就可以实现多种动态动作的识别,具有很好的拓展性。为了减少静态动作识别错误产生的影响,提出一种基于前后信息的纠错算法。实验表明,该算法具有较高的识别准确率,并且具有很好的鲁棒性和实时性。 In view of the fact that the traditional method is not expanding well in human behavior recognition,this paper proposes a serialization research idea.A sequence which can represent the dynamic action is generated by using SVM to train and recognize static action whose feature vectors of skeleton map extracts from Kinect.Therefore,as long as the static action library is rich,a variety of dynamic actions can be identified,and it has good scalability.In order to reduce the influence of the error recognition of static motion,this paper proposes an error correction algorithm based on front and back information.Experiments show that the algorithm has higher recognition accuracy,and has better robustness and real-time.
作者 胡青松 张亮 Hu Qingsong;Zhang Liang(Internet of Things Perception Mine Research Center,China University of Mining and Technology,Xuzhou 221008,China;School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221008,China)
出处 《电子技术应用》 2018年第4期122-125,129,共5页 Application of Electronic Technique
基金 江苏省自然科学基金(BK20151148) 国家重点研发计划资助项目(2017YFC0804409)
关键词 动作识别 骨骼图 特征矢量 SVM action recognition skeleton map feature vectors SVM
  • 相关文献

参考文献3

二级参考文献139

  • 1Mokhber A,Achard C,Milgram M. Recognition of Human Behavior by Space-Time Silhouette Characterization[J].Pattern Recognition Let-ters,2008,(01):81-89. 被引量:1
  • 2Polat E,Yeasin M,Sharma R. Robust Tracking of Human Body Parts for Collaborative Human Computer Interaction[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2003,(01):44-69. 被引量:1
  • 3Kjellstr?m H,Romero J,Kragic' D. Visual Object-Action Recogni-tion:Inferring Object Affordances from Human Demonstration[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2011,(01):81-90. 被引量:1
  • 4Suma E A,Krum D M,Lange B. Adapting User Interfaces for Gestural Interaction with the Flexible Action and Articulated Skele-ton Toolkit[J].Computers& Graphics,2012,(03):193-201. 被引量:1
  • 5Ayers D,Shah M. Monitoring Human Behavior from Video Taken in an Office Environment[J].{H}IMAGE AND VISION COMPUTING,2001,(12):833-846. 被引量:1
  • 6López M T,Fernández-Caballero A,Fernández M A. Visual Surveillance by Dynamic Visual Attention Method[J].Pattern Recogni-tion,2006,(11):2194-2211. 被引量:1
  • 7Aggarwal J K,Park S. Human Motion:Modeling and Recognition of Actions and Interactions[A].Thessaloniki,Greece,2004.640-647. 被引量:1
  • 8Moeslund T B,Hilton A,Krüger V. A Survey of Advances in Vision-Based Human Motion Capture and Analysis[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2006,(2/3):90-126. 被引量:1
  • 9Poppe R. A Survey on Vision-Based Human Action Recognition[J].{H}IMAGE AND VISION COMPUTING,2010,(06):976-990. 被引量:1
  • 10Weinland D,Ronfard R,Boyer E. A Survey of Vision-Based Meth-ods for Action Representation,Segmentation and Recognition[J].Com-puter Vision and Image Understanding,2011,(02):224-241. 被引量:1

共引文献208

同被引文献27

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部