期刊文献+

基于轨检车历史数据的轨道不平顺预测 被引量:2

Prediction of Track Irregularity Based on Historical Data of the Track Inspection Car
下载PDF
导出
摘要 由轨检车检查得到的大量轨道几何尺寸的历史数据,可以挖掘出轨道不平顺发展背后的潜在规律。从已有的历史数据的角度出发,以数据驱动的方式为出发点,得出轨道不平顺的发展趋势,可以做到对轨道质量指数的合理预测;若单纯从某一理论方法出发进行研究,实际观测数据不一定都能符合其结果。基于已有的历史数据出发,寻找最为匹配的规律,为轨道恶化趋势的预测提供新思路。研究结论如下:(1)提供了对轨道质量预测的新思路,预测结果的置信度可达到约92%;(2)基于已有的原始数据,匹配得出的分布函数中的系数根据实际情况的变化而变化,可包容被测轨道的不同个性;(3)轨道质量指数的增长与时间的关系是一种理论上循环的非线性关系。 A large number of historical data of track geometry by the rail inspection car can excavate the potential law behind the development of track irregularity.With the existing historical data,the method of data driven is the starting point,the development trend of track irregularity is obtained,reasonable prediction of track quality index can be achieved;If it is studied simply from a theoretical approach,the actual observed data do not always correspond to the results,based on the existing historical data,the most matching law is found,it provides a new idea for predicting the deterioration trend of track.Research conclusion are as following.①A new idea for prediction of track quality is provided,and the confidence level of prediction result can reach about 92%.②Based on the existing raw data,the coefficients in the matched distribution function are changed according to the actual situation,and the different individuality of the measured track can be contained.③The relation between the increase of TQI value and time is a nonlinear relation in theory.
作者 朱洪涛 陈品帮 魏晖 梁恒辉 ZHU Hong-tao;CHEN Pin-bang;WEI Hui;LIANG Heng-hui(College of Mechanical and Electrical Engineering,Nanchang University,Nanchang 330031,China;College of Automotive Engineering,Jiangxi University of Technology,Nanchang 330098,China;Huizhou Railway Section,Guangzhou Railway Group,Huizhou 516000,China)
出处 《科学技术与工程》 北大核心 2018年第10期144-150,共7页 Science Technology and Engineering
基金 国家自然科学基金(51468042) 江西省自然科学基金(20142BAB206003) 江西省科技支撑计划(20132BBE50036)资助
关键词 预测 轨道不平顺 数据驱动 历史数据 轨道质量指数 prediction track irregularity data driven historical data track quality index
  • 相关文献

参考文献10

二级参考文献105

共引文献173

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部